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ABSTRACT 

Statistical modeling is vital in planning, forecasting and management in the fields of; 

Agriculture, Medicine, Engineering, Economics, Finance and many more. Stock market 

is the secondary capital market which gives investment opportunities to investors and 

liquidity to firms. Share trading affects all the stake holders; customers of the firms, 

employees of the firms, the government and society. As such, share trading is an 

important part of the economy of a country. Share market investments are considered as 

high risk, high return investments, but the investors are concerned about high return at 

low risk. Hence forecasting of risk and return are essential for share markets. 

 The Capital Asset Pricing Model (CAPM) is the most commonly used model for 

forecasting share returns. However, CAPM has been subjected to empirical arguments 

over the decades. Literature gives enough evidence for the inefficiency of CAPM in 

forecasting returns. Yet, the Sri Lankan stock market depends on CAPM for forecasting 

risk and returns of securities. The study was focused to; test existing statistical models for 

forecasting Sri Lankan stock returns and develop suitable techniques for forecasting risk 

and returns.  

Daily closing share price data, monthly sector indices and All Share Price Index data 

were obtained from Colombo Stock Exchange (CSE). Monthly share returns of a random 

sample of companies from CSE were used for data analysis. Pattern recognition of 

returns was the first step of the study. It was found that the Sri Lankan stock returns are 

stationary type, follow wave like patterns. Then the covariance structure of Sri Lankan 



stock returns was identified. The central assertion of CAPM; linear relationship between 

individual company returns and the total market returns were not supported by the 

analysis, but there was a significant linear relationship between individual company 

returns and corresponding sector returns. Therefore individual company returns were 

modeled on sector returns. Thereafter, Auto Regressive Integrated Moving Average 

(ARIMA) models were tested on individual company returns. Finally, a technique based 

on Fourier transformation was applied on returns. The suggested model was named as the 

“Circular Model (CM)”. Goodness of fit of the models was tested by residual plots, Auto 

Correlation Functions and Partial Autocorrelation Functions of residuals, Ljung-Box      

Q statistics, Durbin Watson test statistic and Anderson Darling test. Forecasting errors 

were measured by the Root Mean Square Error and the Mean Absolute Deviation. The 

ARIMA and CM were successful in forecasting returns. However, pattern of ARIMA 

forecasts was not close to the patterns of actual returns, while CM forecasts followed the 

actual returns. It was concluded that the CM is the best model in forecasting Sri Lankan 

stock returns. 

In general, the risk of returns is measured by standard deviation or β coefficient of 

CAPM, but both methods are erroneous. In recent past, ARCH/GARCH models also 

were used for the purpose. The Engle’s ARCH test confirmed the non existence of 

ARCH effect in Sri Lankan stock returns. The study suggested a new approach for 

measuring risk of returns. The theory of uniform circular motion (Newton’s law) was 

applied in measuring risk. The suggested risk measurement, named as “Circular 

Indicator” was successful in measuring risk of returns. 



Wave like patterns are common in the fields of Medicine, Agriculture, Meteorology and 

many others. It is recommended to test the CM on forecasting wave like patterns in these 

fields. Also it is worth testing the suitability of Circular Indicator, as a risk measurement 

in the above fields and many more.  

Key Words:  Fourier Transformation, Uniform Circular Motion, Covariance 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Research 

Scientific forecasting plays a vital role in research and management of a large number of 

fields. Scientific forecasting is based on mathematical and statistical modeling. 

Mathematical models are deterministic. A deterministic model is one in which every set 

of variable states is uniquely determined by parameters in the model and by sets of 

previous states of these variables. Deterministic models are not associated with any 

randomness; conversely statistical models are associated with the randomness. As such, 

statistical models have become more prominent in prediction, control and optimization. 

1.2 Statistical Models 

A statistical model is defined as a set of probability distributions on the sample space S 

(McCullagh, 2002). The three main categories of statistical models are: parametric 

statistical models, semi- parametric statistical models and non-parametric statistical 

models. 

The Statistical models also can be broadly classified into two parts: univariate statistical 

models and multivariate statistical models. A univariate statistical model is an equation or 

set of equations explaining the behavior of a single random variable over time while the 

multivariate statistical models explain the joint behavior of two or more random 



variables. The univariate statistical modeling procedure is based on the past internal 

patterns in data to forecast the future and no external variables are required in forecasting. 

The basic concept of these methods is that the future values of a series are a function of 

past values. Univariate methods include: Moving Average Smoothing, Exponential 

Smoothing, Winters' method, Decomposition techniques, Box Jenkin’s ARIMA methods, 

Linear and Non-linear trend models (Stephen, 1998).  

Multivariate models make projections of the future by modeling the relationship between 

a series and other series. It models future values of a series as a function of itself and 

values of other variables. Multivariate Regression and Vector Auto Regression (VAR) 

are some of the multivariate techniques.  

1.3 Stock Market Forecasting 

Risk and return are the most important concepts in financial markets (Pande, 2004). 

Investors expect higher returns at a lower risk; as such, they are very much concerned 

about the information on the risk and return of individual assets. Therefore, forecasting 

risk and return of assets were of immense interest over the past decades.  

Statistical techniques and soft computing techniques are the two main strands of stock 

market forecasting. Statistical techniques comprise of Fundamental analysis and 

Technical analysis. The fundamental analysis involves analyzing the economic factors or 

characteristics of a company, namely; company value, company earnings, book-to-market 



equity etc. On the other hand, the interest in the technical analysis is the price movements 

and trading volume in the market. 

Modern Portfolio theory of Markowitz (1952) was one milestone of fundamental 

analysis. Tobin (1958), Treynor (1961), Sharpe (1964), Lintner (1965), Mossin (1966), 

Black (1972) and many others contributed to the development of the idea of Markovitz 

(1952). Their combined output is known as the Capital Asset Pricing Model (CAPM), 

which is given by the formula; 

 ])([)( fmfi RRERRE          (1-1) 

Where, E(Ri) is the expected return of ithcompany assets, E(Rm) is the expected return of 

the market, Rf  is the risk free rate of return and
2

, )(

m

mi RRCov


  . The   coefficient, 

which is known as the risk factor is the key parameter in CAPM. It is considered that, if β 

= 0, the share price is not at all correlated with the market, therefore no risk. If β = +1, an 

average level of risk. If   β >1,   security returns fluctuates more than the market returns, 

at high risk. If β<1, asset inversely follows the market (Pande, 2004). CAPM has been 

widely used in stock market forecasting all over the world. 

In addition to CAPM, the Vector Auto Regression (VAR) models, exponential 

smoothing, Auto Regressive Integrated Moving Average (ARIMA) models, and Artificial 

Neural Network (ANN) are used in forecasting returns. In general, risk of a security is 

measured by the variance of returns or beta (β) factor of CAPM (Pande, 2004). In recent 



past, some scholars have attempted to measure the risk by Auto Regressive Conditional 

Heteroscedasticity (ARCH) and Generalized Auto Regressive Conditional 

Heteroscedasticity (GARCH) models.  

1.3.1 Share Trading in Sri Lanka 

Share trading in Sri Lanka commenced in the 19th century, with the formation of 

Colombo Share Brokers Association. Later it was renamed as ‘Colombo Stock Exchange 

(CSE). According to official website of CSE, 295 companies are listed for year 2016, 

representing twenty business sectors. All Share Price Index (ASPI) and S&P SL20 are the 

main market indices. In addition, the market performance of each sector is indexed by 

corresponding sector indices.  

Fundamental Analysis approach of asset pricing, CAPM has been used for the Sri Lankan 

share market forecasting. Beta (β) coefficients for listed companies are published by CSE 

on quarterly basis and the investors use them for investment decisions. 

1.4 Research Problem 

CAPM model has been subjected to extensive empirical testing in the past few decades. 

The central assertion of the CAPM is that, there exist a linear relationship between the 

expected return and the market risk (β). This was first argued by Banz (1981). 

Introducing the size effect for the explanation of returns, he showed that the average 

returns of stocks are negatively related to the market equity (ME). Black, Jensen and 

Scholes (1972); Fama and MacBeth (1973) found that the CAPM was valid for pre – 



1969 period, but not afterwards. Bhandari (1988) has found that; risk (β), market equity 

and leverage together explain average returns. Stattman (1980); Rozenberg, Reid and 

Lanstein (1985); Chan, Hamao and Lakonishok (1991) have found that average returns 

are positively related to the book-to-market equity (BE/ME). Basu (1983) has shown that 

the earnings to price ratios (E/P) help explaining the cross section of average returns. 

Fama (1992) has shown that, only the firm size and BE / ME capture the cross sectional 

variation of average returns. Those findings have given considerable evidence that the 

risk itself cannot explain the returns of individual securities and hence the portfolio 

returns. Nimal (1997) and Samarakoon (1997) have confirmed the validity of the above 

findings for Sri Lankan stock market, But the Sri Lankan stock market still depends on 

the CAPM. 

Literature revealed that Konarasinghe & Pathirawasam (2013); Rathnayaka, Seneviratna, 

& Nagahawatta (2014) and many others have attempted to establish a suitable forecasting 

technique for the Sri Lankan share market. But the forecasting ability of suggested 

methods was not satisfying, thus it is essential to develop suitable techniques for the Sri 

Lankan share market for forecasting returns. 

Risk of a security is measured by the variance of returns or beta (β) factor of CAPM. If 

the observations of a data series are independent, then the variance is a suitable measure 

of dispersion. But time series data are generally auto correlated, as such, the variance 

may not be appropriate in measuring the risk of returns. Also the literature revealed that 



the β does not exist for many markets. Therefore, a clear knowledge gap exists in 

measuring risk of returns. 

Research questions identified on this basis were: 

i. What are the patterns of Sri Lankan share market returns? 

ii. What would be the covariance structure of Sri Lankan share market returns? 

iii. Is   coefficient suitable to measure the risk of returns of individual companies of 

the Sri Lankan share market? 

iv. Is Auto Regressive Integrated Moving Average (ARIMA) model capable of 

forecasting Sri Lankan stock returns?  

v. Does frequency domain approach; spectral analysis is successful in forecasting Sri 

Lankan stock returns? 

vi. How to measure the stability (risk) of individual companies in share market 

performances?  

1.5 Objectives of the Study 

On view of the above, the objectives of this study were as follows; 

Primary Objectives 

i. To develop statistical models for forecasting Sri Lankan share market returns. 

ii. To develop an indicator to compare the relative stability or risk of individual 

companies in share market performances. 



Secondary Objectives 

i. To identify the patterns of Sri Lankan stock returns. 

ii. To identify the covariance structure of Sri Lankan share market and make 

forecasts based on covariance. 

iii.  To test the suitability of ARIMA models in forecasting Sri Lankan stock market 

returns. 

iv. To test the applicability of Fourier transformation in forecasting Sri Lankan stock 

market returns. 

v. To apply the Newton’s law of uniform circular motion in measuring risk of 

returns. 

1.6 Significance of the Study 

Firms have two types of assets: real assets and financial assets. Real assets are physical 

assets; financial assets are shares and bonds. The firms issue securities to investors in the 

primary capital markets. The securities issued by firms are traded in the secondary capital 

markets (stock exchanges). Return of a single asset or a share is defined as sum of the 

dividend yield and the capital gain. The dividend yield totally depends on the dividend 

decision of a firm. As such, the major concern of the investors is the capital gain yield.  

Share trading is important to the investors, industries as well as the entire economy of a 

country. Whenever a company wants to raise funds, it can issue shares of the company 

while an investor can get the part ownership of the company through buying shares. Also 



a country can gain foreign investment for the development via stock market. As such, a 

healthy stock market has been considered indispensable for the economic growth. Share 

trading contribution to the Sri Lankan Gross Domestic Product (GDP) has been 

increasing over the years. In year 2014, market capitalization of CSE was 2.4 trillion 

rupees, corresponds to approximately 1/3 of the GDP (Wikipedia, 2016).  

Stock market investments are high risk investments. Thus, forecasting is the most 

important activity that helps to judge the market risk and grab scarce opportunities. Javad 

(1993) pointed out the importance of an efficient pricing mechanism to a stock market. 

According to the author, “a major factor hindering the foreign investment in a market is 

lack of information about the price or return behavior of the market”.  CSE Annual 

Report (2014) revealed that domestic investor’s attraction towards share trading has 

increased while foreign investor’s attraction has decreased. This may be due to the 

inefficiency of the forecasting mechanism in the Sri Lankan share market. 

Some studies have shown that the risk factor (β) is not important at all in stock market 

forecasting. As such it is essential to develop an indicator to measure the investment risk.  

Objectives of the present study were twofold: to test existing methodologies in 

forecasting returns and to find new knowledge in forecasting. Outcomes of the study 

contribute not only to the Sri Lankan financial market but also to the other capital 

markets. Also new knowledge found in the study may applicable to the other fields as 

well. 



1.7 Organization of the thesis 

This study consists of five chapters. The first chapter carries an introduction and the 

second chapter reviews a substantial number of previous researches which gives insight 

into statistical modeling in financial markets. Chapter three carries methodology and 

theoretical background of the study. Results and data presentation are in chapter four. 

Chapter five contains the conclusions and recommendations. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Developments in Stock Market Forecasting 

Scientific forecasting in share market returns has a long history going back to 1950’s. 

With the increasing importance in forecasting share returns, a large number of studies 

focused on it from all over the world. Those studies can be broadly categorized into two 

parts: studies based on Statistical techniques and Soft Computing techniques 

(Ayodele, Aderemi & Charles, 2014). Statistical techniques are again subdivided into 

Fundamental analysis based studies and Technical analysis based studies (Konarasinghe 

& Pathirawasam, 2013). The fundamental analysis is involved in analyzing the economic 

factors or characteristics of a company; namely, company value, company earnings, 

book-to-market equity etc. The technical analysis is interested in the price movements 

and trading volume in the market. Artificial neural networks (ANNs) and Neurofuzzy are 

the soft computing techniques widely used in stock market forecasting. As this study was 

focused on technical analysis, the literature review was restricted to the technical analysis 

of financial market forecasting. 

Forecasting stock returns by technical analysis goes back to findings of the Osborne 

(1959).  Osborne’s study was based on the Brownian motion which is also known as the 

particle theory. Osborne (1959) showed that the logarithms of common stock price 

changes also have a probability distribution similar to a particle in Brownian motion. 



According to him, if  )(/)(ln 0 tPttPY  where P (t+δt) and P0 (t) are the prices of the 

same random choice stock at random times (t+δt) and t, then the steady state distribution 

function of Y is,  

 )2/()2/(exp)( 222 ttYY        (2-1)                                 

He also showed that the expected value of the share price of a common stock (P)   

increases with time at a rate of 3% to 5% per year and the variance of P increases with 

the increasing number of transactions. Osborne has tried to address the price- volume 

relationship, but was not successful.  

Followed by Osborne (1959), a large number of studies were focused on modeling stock 

prices or returns based on Regression models, Auto Regression models, exponential 

smoothing, Auto Regressive Integrated Moving Average (ARIMA) models, ARCH / 

GARCH models and Artificial Neural Network (ANN). A limited number of studies were 

based on Spectral analysis.   

In relevance to the objectives of the study, the literature review was restricted to:  

i. Studies based on Covariance analysis.  

ii. Studies based on Regression analysis. 

iii. Studies based on Vector Auto Regression models. 

iv. Studies Based on ARIMA models. 

v. Studies based on ARCH /GARCH models 



vi. Studies based on Spectral analysis. 

2.2 Studies based on Covariance Analysis 

Covariance plays a key role in financial economics, especially in portfolio management.  

In financial markets, covariance is a measure of the degree to which returns on two or 

more risky assets move in tandem. A positive covariance means that the asset returns 

move together. A negative covariance means that the returns move inversely. The study 

of Markowitz (1952) was the first study based on covariance analysis in forecasting 

returns and risk. According to the author, expected value is the measurement of return 

and variance is the measurement of risk. The expected value and the variance of returns 

of a single asset are given by formulae; 

   )()(
1

ii

n

i

i rPrRE 


         (2-2) 

22 )]([)()( iii RERERVar         (2-3) 

Markowitz (1952) was the base of the development of CAPM.
 

Fama and James (1973); Bhandari (1988); Fama and Kenneth (1999); Samarakoon 

(1977); Nimal (1997) and many others have partially taken the idea of Markowitz (1952), 

but have incorporated characteristics of firms: size, liquidity, earnings to price ratio etc. 

in forecasting stock returns. It was difficult to find the studies purely based on the 

covariance structure of the share market.       



2.3 Studies based on Regression Analysis. 

The Regression analysis investigates and models the relationship between a response 

variable and one or more predictors. Regression models can be categorized as: simple 

regression models, multiple regression models and logistic regression models. These can 

be either linear models or non-linear models. Simple regression and multiple regression 

model the relationship between numerical variables while logistic regression models the 

relationship between categorical response variable and numerical or categorical 

predictors. The Ordinary Least Square method is used in parameter estimation of both 

simple and multiple regressions and maximum likelihood procedure is used in logistic 

regression. It is mandatory to test several assumptions about errors of regression. They 

are: independence of errors (errors are not serially correlated), normality of errors and 

homoscedasticity (constant variance) of errors. If any of these assumptions are violated, 

then the forecasts yielded by a regression model are inefficient or misleading. 

Following price- volume relationships have been tested in several studies: 

  XY i         (2-4) 

    ii XY         (2-5) 

Xi
’s are the predictor variables and ε is the random error. 

Study of Crouch (1970) has tested Regression models on daily share price changes and 

trading volume data. His study was based on the New York stock exchange. Data 



collection period was from September 2006 to March 2007. Results of the Crouch (1970) 

have given evidence for a positive linear relationship between the absolute price change 

and the trading volume. But R2 of the models were below 50% for daily data: therefore 

the author has used hourly share price data and trading volume to improve the model. 

This is clearly a disadvantage in his method, because the stock market forecasting is 

practically not useful on hourly basis. Further, his data collection period, which is seven 

months, was not sufficient. It is mandatory to test model assumptions: normality of 

residuals, serial auto correlation of residual and homoscedasticity of residuals, but the 

author has not reported the results of them. In addition, the author also has not done the 

model verification. 

Clark (1973) has applied the subordinate stochastic process for speculative price changes. 

In the study he has tested the following linear and non- linear models; 
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Where, P is the share price change and V is the trading volume and ε is the random error 

term. His study has given evidence for the relationship between the share price change 

and the trading volume. During the time of Clark (1973), most of the academics and 

economists believed that share price changes and share returns are normally distributed. 

Clark (1973) found that the distribution of returns and the trading volumes follow Log- 



Normal distribution. However, Clark (1973) has not performed tests on residuals and has 

not done the model verification. As such, the validity of the fitted models is doubtful.   

Study of Timothy (1994) was based on the daily All Ordinaries Index (AOI) values and 

the trading volume statistics of the Australian stock market from April 1989 to December 

1993.  He has tested the linear and non linear regression models between the trading 

volume and the magnitude of returns; 

ttttt

ttttt

RDRV

RDRV









||||

||||

2

2

2

10

210

      (2-7)  

Where, Rt  is the return on day t, Vt is the trading volume of day t, Dt = 1 if Rt< 0, and Dt = 

0 if Rt ≥ 0. His findings support the relationship between the price change and the trading 

volume, irrespective of the direction of the price change.   

2.4 Studies Based on Vector Auto Regression (VAR) Models 

Vector Auto Regression models were introduced by Sims (1980).  These models can be 

used to characterize the joint behavior of variables. In VAR models each variable is a 

linear function of past lags of itself and past lags of the other variables. VAR models 

have been used in many fields including the financial management. 

Timothy (1992) used VAR models on share returns and trading volumes. Weekly data of 

NASDAQ stock market (an American stock exchange.) from 1972 to 1986 has been used 



in the model testing. In the study, Timothy (1992) has tested the following univariate 

causal models; 
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And the following multivariate causal models; 
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Where Rt is the return of week t, Rt-i is the return of i lag behind, Vt is the trading volume 

of week t, Vt-j is the trading volume of j lag behind and Dt is the dummy variable. He 

could not find any evidence for a multivariate causal relationship between returns and the 

trading volume, but he found evidence for univariate causality of returns. The author has 

tested regression coefficients, but has not tested modeling assumptions and not validated 

the selected model. 

Saatcioglu and Starks (1998) have examined the stock price-volume relation in a set of 

Latin American emerging markets. They have collected data from; Argentina, Brazil, 

Chile, Colombia, Mexico, and Venezuela. Data collection period of the study was from 

January 1986 to April 1995. They have tested the VAR models; 
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Where (Vt) is the trading volume and (Pt) is the share price. They have found evidence for 

a return- volume relationship for four of the six markets, but not for all. They also have 

not performed tests for residuals and not done the model validation.   

Chordia and Swaminathan (2000) have formed set of portfolios using data from USA 

stock databases. Data collection period was from 1963 to 1996. Daily and weekly equally 

weighted portfolio returns were modeled by; 
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Where, RA,t is the return on the lowest trading volume portfolio of A on day t,   RB,t is the   

return on the highest trading volume  portfolio B on day t, R0,t  is the  return of zero net 

investment portfolio  on day t. The authors have concluded that the tested models are 

suitable in forecasting. But R2 of all the tested models were low. They also have not 

performed model verifications and test for errors. As such, their selected models may not 

be suitable for forecasting. 



Study of Wen-Hsiu, Hsinan&Chwan-Yi (2004) is similar to the study of Chordia and 

Swaminathan (2000). Wen-Hsiuet. al. (2004), have used data from the Taiwan stock 

market from January 1991 to December 2002. Results of their study were different from 

the previous studies; they have not found a causal relationship between the returns and 

the trading volume. 

Heimstra and Johathan (1994) have tested bidirectional causality between returns and the 

volume in New York Stock Exchange. Data collection period of the study was 1915 to 

1990. They have tested linear auto regression models and non-linear auto regression 

models. The results of their study provide evidence for significant bidirectional nonlinear 

causality between returns and volume.  

Guillrmo, Roni, Gideon and Jiang (2002) have studied the dynamic relation between 

return and volume of individual stocks listed on New York Stock Exchange and 

American Stock Exchange. They have used daily data from 1993 to 1998 and tested the 

auto regression model with interactions; 
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Where  Ri,t is  return of ith company on day t and Vi,t is  trading volume of ith  company on 

day t. Results  of the study supported the return –volume relationship with interactions.   

Gong-Meng, Michael and Oliver (2001) studied the dynamic relation between the stock 

returns, trading volume, and volatility. Their study was based on the daily market price 



index and the trading volume series from 1973 to 2000 for the nine largest stock 

exchanges: New York, Tokyo, London, Paris, Toronto, Milan, Zurich, Amsterdam, and 

Hong Kong. The models tested were; 
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Where Rt is the return on day t, Vt is the trading volume of day t. According to the results 

of the study, bi-directional relationships exist only for some countries, but not for all. The 

authors have highlighted the importance of studying the joint behavior of stock prices and 

the trading volume. 

Jianping, Olesya and Lubomir (2002) have examined the dynamic relation between the 

return and the volume of individual stocks in Russia and the other emerging markets. 

Their study was focused on the 28 large companies listed in the Russian Trading System 

(RTS). The daily closing prices and the daily trading volume from 1995 to 2001 were 

used to test the following models with interactions; 
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Where Ri,t is the return of ith company on day t, Vi,t is the trading volume of ith  company 

on day t and Vm,t is the trading volume of the market on day t. They have found strong 

evidence for the return volume- relationship. 



Ciner (2003) has tested the causality models on small-capitalization firms in the US and 

France. Data used in the study were S&P 600 and the NM stock indices from 1995 to 

2002. They have tested the VAR including a dummy variable Di to account for the day of 

the week and month of the year effects in stock returns; 
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Ciner (2003) also has confirmed the return- volume relationship for both US and France 

stock markets.  

Xiangmei, Nicolaas&Yanrui (2003) have examined the relation between the trading 

volume and the stock returns for two Chinese A-share markets and ten individual 

companies of the energy sector. They have used share price indices, trading volume and 

share price data from 1997 to 2002 and have tested the linear regression models and auto 

regression models (2-13). They also have found strong evidence for the causal 

relationship between the returns and the trading volume.  

Kamath (2007)’s study was based on the Nascent stock exchange of Turkey. The study 

has utilized the daily data of the Istanbul Stock Exchange from 2003 to 2006 to test the 

causality between daily index returns and daily volume, by using models (2-13). Findings 

of this study also supported the causality between the returns and trading volume. 



Malabika, Srinivasan and Devanadhen (2008) have examined the relationship between 

the stock price changes and the trading volume for Asia-Pacific Stock Market. Data 

collection period was from year 2004 to 2008. The results of the study have evidenced for 

the significant relationship between trading volume and the absolute value of price 

changes for most of the selected companies. 

Sarika and Balwinder (2009), have examined the return- volume relationship using daily 

data of the Sensitive Index (SENSEX).They have utilized the data from October 1996 to 

March 2006. The study has provided evidence for the causal relationship, given in 

equations (2-13).  

Naliniprava (2011) has investigated the dynamic relationship between the stock return 

and the trading volume of the Indian stock Market and evidenced for bi-directional 

causality between trading volume and stock return. 

Habib (2011) has investigated the joint dynamics of stock returns and trading volume 

(equations 2-13) for the data collected from Egyptian Securities Exchange (ESE). His 

analysis has not supported the existence of a causal relation trading volume and the stock 

returns.  

 

Ong Sheue and Ho Chong (2011) have tested the VAR models, 2-13, using data from 

Malaysia and Singapore stock markets. They have found evidence for a significant 

bidirectional nonlinear causality between the returns and the trading volume in the 

Malaysian stock market. 



Marwan (2012) has examined the causal relationship between returns and trading volume 

in the Palestine Exchange. Models 2-13, were tested on weekly trading volume and 

returns over the period from October 2000 to August 2010.  The results supported the 

causality between the returns and trading volume. 

Konarasinghe & Pathirawasam (2013) have tested the causal relationship between the 

returns and the trading volumes in the Sri Lankan share market, adopting models 2-13. 

Monthly total market returns and trading volumes, monthly sector returns and trading 

volumes from year 2005 to 2011 were used for model testing. The results of multivariate 

tests have revealed that there was no causal relationship between the market returns and 

the trading volumes. Further, they have found that the stock returns were auto-correlated 

and stationary while the trading volumes were auto-correlated but not stationary. 

 

2.5 Studies Based on ARIMA Models 

The ARIMA model was introduced by Box and Jenkins in 1970. In the ARIMA model, 

future value of a variable is a linear combination of past values and past errors, expressed 

as; 
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Where, Yt is the actual value, εt is the random error at time t, φp and θ q are the 

coefficients of autoregressive and moving average, respectively. B is the back shift 

operator. 



Ayodele, Aderemi and Charles (2014-a)  have tested the ARIMA models on forecasting 

the stock prices of the New York Stock Exchange (NYSE) and the Nigeria Stock 

Exchange (NSE). The data collection period of the study was from 1995 to 2011. The 

authors have considered: Bayesian Information Criterion (BIC), standard error of 

regression, adjusted R2, LBQ-statistics and correlogram to select the best fitting models. 

The study has given strong evidence for the suitability of ARIMA in short term 

prediction of share prices.  Their study was focused only on the developed markets, not 

on the emerging markets; as such, no evidence can be obtained for the suitability of 

ARIMA in forecasting emerging markets. 

Prapanna, Labani and Saptarsi (2014) have done a study titled “Study of Effectiveness of 

Time Series Modeling (ARIMA) in Forecasting Stock Prices”. The study was focused on 

Indian stock market. Eight companies from seven business sectors of National Stock 

Exchange were selected for the study. The data collection period was from April 2012 to 

February 2014. The Akaike Information Criteria (AIC) was used to quantify the goodness 

of fit of the model and the model with the least AIC was selected as the best fitting 

model. The Mean Absolute Error (MAE) was used to assess the forecasting ability of the 

selected models. Authors have concluded that the forecasting accuracy of models for all 

the companies were above 85%. But, the sampling technique was not mentioned in the 

study. Also residual tests were not performed on the selected models. As such their 

conclusion is quite doubtful.  



Emenike (2014) has published an article titled “Forecasting Nigerian Stock Exchange 

Returns: Evidence from Autoregressive Integrated Moving Average (ARIMA) Model”. 

The author has used ARIMA models and forecasted stock prices of the Nigerian Stock 

Exchange (NSE). Monthly All-Share Indices of the NSE from January 1985 to December 

2009 were used for the model fitting and validation. ARIMA (1, 1, 1) was selected as the 

best fitting model, but forecasted returns did not match with actual returns. 

Many researchers have compared the forecasting ability of ARIMA with Neural Fuzzy 

and ANN and given considerable evidence for the success of ARIMA in the share market 

forecasting. Ayodele, Aderemi and Charles (2014-b) have compared ARIMA and 

Artificial Neural Networks models for stock price predictions. The study has utilized 

stock data of New York stock Exchange for the period from August 1988 to February 

2011. The stationary of the series were tested with the help of a correlogram.  Bayesian 

Information Criterion (BIC), standard error of regression, adjusted R2, Q-statistics, ACF 

and PACF for residuals were used in ARIMA model selection. Percentage Error (PE) was 

the measurement of errors. The study has concluded that both ANN and ARIMA models 

serve well in stock price prediction. Also, they have shown that the ARIMA models are 

more superior to ANN in forecasting. 

Rosangela, Ivette, Lilian, and Rodrigo (2010) have compared ANN, Neural fuzzy and 

ARIMA for Brazilian stock index forecasting. They also have identified the forecasting 

ability of ARIMA in forecasting the stock returns. 

 



 

2.6 Studies based on ARCH /GARCH models 

Traditional time series models assume a constant one-period forecast variance. Engle 

(1982) generalize this implausible assumption, introducing a new class of stochastic 

processes called Auto-Regressive Conditional Heteroscedasticity (ARCH) processes. 

ARCH is a mean zero, serially uncorrelated processes with non constant variances 

conditional on the past, but constant unconditional variances. For such processes, the 

recent past gives information about the one-period forecast variance. The Generalized 

Auto Regressive Conditional Heteroscedasticity (GARCH) model is an improvement of 

ARCH model, by Bollerselev (1986). 

In other words, an ARCH (q) process is one for which the variance at time t is conditional 

on observations at the previous m times, and the relationship is; 
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A GARCH (p,q) model uses values of the past squared observations and past variances to 

model the variance at time t; 
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Where; Yt is the observation at time t, σt is the variance at time t, et is the random error at 

time t. 



ARCH / GARCH models are extensively used in financial time series. Hsieh (1989) 

modeled Heteroscedasticity in Daily Foreign-Exchange Rates. The author has estimated 

ARCH and GARCH models for five foreign currencies; Canadian dollar, Swiss franc, 

Deutsche mark, Japanese yen and British pound,  using 10 years of daily data. It finds 

that the ARCH and GARCH models remove all heteroscedasticity in price changes in all 

five currencies. Goodness-of-fit diagnostics indicate that exponential GARCH with 

certain non normal distributions fits the Canadian dollar extremely well and the Swiss 

franc and the deutsche mark reasonably well. Only one non normal distribution fits the 

Japanese yen reasonably well, but none fit the British pound. 

Timothy (1994) has tested GARCH models on the trading volume. The study was based 

on the daily All Ordinaries Index (AOI) values and the trading volume statistics of the 

Australian stock market from April 1989 to December 1993. Author has showed that the 

GARCH model is suitable for volatility explanations. 

Bekaert and Harvey (1997) has applied GARCH models to twenty emerging markets. 

The authors have used US dollar returns of those markets for the period, January 1976 to 

December 1992. They have compared the conditional and unconditional volatility 

measures and confirmed the superiority GARCH (1,1) model in explaining volatility of 

the markets. 

Olowe (2009) investigated the relation between stock returns and volatility in Nigeria 

using E-GARCH model. Using daily returns over the period for January 2004 to January 

2009, volatility persistence, asymmetric properties and risk return relationship were 



investigated. The study found little evidence on the relationship between stock returns 

and risk as measured by its own volatility. The study found positive but insignificant 

relationship between stock return and risk. The result shows the banking reform in July 

2004 and stock market crash since April 2008 negatively impacts on stock return while 

insurance reform and the global financial crisis have no impact on stock return. The stock 

market crash of 2008 is found to have contributed to the high volatility persistence in the 

Nigerian stock market especially during the global financial crisis period. The stock 

market crash is also found to have accounted for the sudden change in variance. 

Peiris and Peiris (2011) examined the volatility of different sectors in Colombo Stock 

Exchange (CSE) and how the macro economic factors affect on the volatility by fitting 

ARCH and the GARCH using monthly time series data of 20 sectors in CSE for the 

period 2005 to 2010. Authors have used ARMA model as mean equation, and the 

residuals of the fitted ARMA models were tested on ARCH/ GARCH models.  Results 

found that sixteen out of twenty sectors in CSE has a significance volatile (p<0.05) and 

both ARCH and GARCH terms on the fitted models for individual sectors were 

significant (p<0.05).  

 Samayawardena, Dharmarathne and Tilakaratne (2015) have tested the volatility models 

for the stock indices of Colombo stock exchange and stock markets of United States, 

India and United Kingdom are highly useful to the investors. To capture the 

characteristics of volatility in the stock price series, GARCH models have been used. All 

Share Price Index of Colombo stock exchanges (ASPI), S & P 500 index of New York 



stock exchange, FTSE 100 of the London stock exchange and BSE SENSEX index of 

Bombe stock exchange have been considered in the study, and the study period is from 

1st January 2004 to 1st January 2014. GARCH (1, 1) model was identified as the best 

model for the ASPI return series, EGARCH (1,1) model was identified as the best model 

for both the FTSE 100 and BSESENSEX indices return series and while S & P 500 return 

series is best expressed by EGARCH (2,1) model. The model adequacy of the selected 

models have been tested using the ARCH LM test, Correlogram of squared returns and 

Correlogram of standardized residuals, while Q-Q plot was applied to check the error 

distribution.  

 

2.7 Studies based on Spectral Analysis. 

Cyclical patterns are a common feature in natural sciences. The analysis of electrical 

signals; image processing; sound spectrograms are examples for that. There are two ways 

of viewing any type of a wave: in the time domain, or in the frequency domain. The 

traditional way of observing such waves is to view them in the time domain. The time 

domain is a record of what happens to a parameter of the system versus time or space. 

The time domain analysis is known as “Time Series Analysis”. Waves generally have a 

period. A period is the distance between two peaks or troughs or time between two peaks 

or troughs of a wave. A closely related property of the wave period is the frequency. The 

frequency domain analyses a signal with respect to the frequency. This frequency domain 

representation of signals is called the “spectrum” of the signal and frequency domain 

analysis is known as the “Spectral Analysis”. It is also known as the Fourier analysis.  



Spectral analysis was initially established in natural sciences such as Physics, 

Engineering, Geophysics, Oceanography, Atmospheric science, Astronomy etc. and was 

not much used in the field of Economics. By 1959, John Von Neumann of Princeton 

University, UK has realized the applicability of Spectral analysis in economic time series. 

Neumann’s idea was taken by his co-author Oskar Morgenstern and two other fellows: C. 

W.J. Granger and Michio Hatanaka. As a result Granger and Hatanaka could publish the 

book, “Spectral Analysis of Economic Time Series”. Granger & Morgenstern (1963) was 

the first recorded application of Spectral analysis in financial markets. Their study was 

focused on New York stock market. They have used weekly share price data, weekly 

turnover and monthly share price data, for the period from 1939 to 1961, analyzed the 

price series by Spectral Analysis. Granger & Morgenstern (1963) have tested the periodic 

function;  

taVR tt cos
        (2-19) 

Where Rt is the return on period t and Vt is the trading volume on period t. But the results 

of the study were not successful as expected. Granger & Hatanaka (1964) have conducted 

a study using monthly share prices of the New York stock exchange for the period from 

January 1946 to December 1960. The results of their study were also not up to the level 

of satisfaction. 

It was noted that fewer studies had been conducted on stock returns using Spectral 

analysis. As Granger and Hatanaka (1964) emphasized, it may be due to the lack of 



understanding in advanced mathematical techniques: Trigonometry, Calculus and 

Complex numbers. 

According to the literature, CAPM and VAR were successfully applied in forecasting 

stock returns in large number of stock markets. But most of them were developed 

markets and few were emerging markets. The ARIMA also gained importance in 

forecasting share prices or returns in the recent past. Notably fewer applications were in 

Spectral analysis. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

MATERIALS & METHODS 

3.1 Background to the Data 

Pattern recognition of stock returns paves the path for model developments. It gives an 

insight about the trends, seasonal variations, cyclical variations and volatility of the time 

series. Therefore, the study was begun with time series pattern recognition of stock 

market returns. Stock market is a population consists of a number of subsets (sectors). 

For example, Colombo Stock Exchange (CSE) has 20 business sectors. These subsets are 

defined in a way that they are mutually exclusive and the elements of these subsets (listed 

companies of these sectors) are homogeneous in the nature of business. Therefore, returns 

of individual companies within the sector could move together or returns of individual 

companies could move with the total market. As such, it was intended to understand the 

covariance structure of the Sri Lankan share market and make use of the findings for 

forecasting individual company returns.   

 Konarasinghe & Pathirawasam (2013) has shown that the sector returns and total market 

returns of the Sri Lankan stock market are of stationary type. It may be true for the 

individual company returns as well. If so, the stock returns have a wave like pattern.  A 

wave can be viewed either in a time domain or a frequency domain. Therefore the study 

was directed to the time domain analysis and the frequency domain analysis. Auto 

Regressive Integrated Moving Average (ARIMA) models were tested in the time domain 



analysis. Fourier transformation was applied on the returns in the frequency domain 

analysis.  

 In general, risk of a security is measured by the variance of returns or beta factor of 

CAPM (Pande, 2005). But both methods are erroneous.  Hence the study was focused to 

develop an indicator to compare the relative risk of individual companies in their market 

performances. In recent past the ARCH /GARCH models have extensively used to 

explain the risk of returns. As such, the existence of ARCH effect was tested on the 

individual company returns of Sri Lankan share market. Then a totally new approach was 

tested on measuring the stability of individual companies in market performances. That 

is, the theory of Uniform Circular Motion was used to explain the risk of returns. 

 3.2 Population and Sample of the Study 

Listed companies of Colombo Stock Exchange (CSE) in year 2014 were the population 

of the study. The population consisted 20 business sectors: Plantation (PLT), Oil palms 

(OIL), Land & Property (L&P), Motors (MTR), Manufacturing (MFG), 

Telecommunication (TLE), Stores supplies (S&S), Trading (TRD), Services (SRV), 

Power & energy (P&E), Investment trust (INV), Hotels & Travels (H&T), Heath care 

(HLT), Footwear & Textile (F&T), Information Technology (IT), Diversified Holdings 

(DIV), Construction  engineering (C&E), Chemicals and Pharmaceuticals (C&P), 

Beverage Food and Tobacco (BFT) and Bank, Finance and Insurance (BFI). There were 

294 companies listed in year 2014. Daily closing share prices of individual companies, 



monthly indices of business sectors and All Share Price Indices (ASPI) from year 1991 to 

year 2014 were obtained from CSE.  

The population of the study consist twenty business sectors; as such it was intended to 

use stratified sampling technique with proportions. But, some of the business sectors have 

only few companies, for examples, the sector IT has only one company, the sector C & E 

has only three companies etc. Therefore the simple random sampling technique was 

adopted; a sample of fifty companies was selected for the data analysis, excluding the 

companies not having continuous trading.  

Monthly average share returns for individual companies were calculated by a standard 

formula, 
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Where; Pt is the share price at time t. Monthly returns of business sectors were calculated 

by formula; 
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Where It is the sector index of month t. Monthly total market returns were calculated by 

formula; 
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Where, ASPI is the All Share Price Index. 

Outlier Adjustment 

Outliers are extremely large or small values outside the overall pattern of a data set. The 

outlier detection and adjustment are essential in data analysis. Boundaries of outliers are 

defined in many ways. Following rule is often used in outlier detection (Attwood, Clegg, 

Dyer and Dyer, 2008).   
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        (3-4) 

Where Q1, Q3 are the lower quartile and upper quartile respectively, IQR is the inter 

quartile range, L is the lower boundary and U is the upper boundary. Any data value 

above U or below L was considered as outliers. Such data points were adjusted by taking 

moving average of order three, using a computer program written in MATLAB 

(Appendix 1.1). 

Accuracy of the program is based on two assumptions; first three values of the array are 

not being outliers, three consecutive outliers have not occurred. Outliers were manually 

adjusted, when one or two of the assumptions were violated.   



3.3 Statistical Methods and Terminology Used in the Study 

Following terminologies and statistical techniques were extensively used in the study. 

Covariance and Correlation 

Covariance and correlation measure a certain kind of dependence between two or more 

random variables. Suppose that X and Y are real-valued, jointly distributed random 

variables with means E(X), E(Y) and variances Var(X), Var(Y), respectively; then the  

covariance between X and Y is defined as; 

    )]()][([)( YEYXEXEXYCov        (3-5)  

For a population of size N, the covariance can be written as; 
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 And for samples of size n, it is given as;     
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In the special case when X=Y,  
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Correlation is a scaled version of covariance. The correlation between X and Y is defined 

as;    
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The sign of the covariance or correlation shows the tendency in a linear relationship 

between two variables. Both the covariance and correlation indicate whether the variables 

are directly or inversely (positively or negatively) related. The correlation also tells the 

degree to which the variables tend to move together. 

Auto Correlation  

Auto correlation is the correlation between observations of a time series separated by k 

time units or k lags. The population ACF of lag k is defined as; 
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Where γk is the covariance at lag k and γ0 is the variance. The sample autocorrelation 

covariance at lag k is given by; 
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The plot of autocorrelations is called the correlogram. It can be used for pattern 

recognition and as a method for testing stationary of a series (Stephen, 1998).  
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Figure 3.1: ACF of a Series with a Trend Component 

The decreasing pattern of Figure 3.1 suggests a trend component in the series.  
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Figure 3.2: ACF of a Series with a Seasonal Pattern 

Figure 3.2 shows a repeating pattern in ACF. It suggests a presence of seasonal 

component in the time series. 

Stationary Stochastic Process 

A stochastic process with a discrete time parameter is said to be stationary (or stationary 

in the strict sense) if the distribution of 
nttt yyy ,...,,

21
is the same as the distribution of 

tttttt n
yyy  ,...,,

21
 for every finite set of integers  nttt ,...,, 21 and for every integer t 

(Anderson, 1971). A stochastic process is said to be stationary, if its mean and variance 

are constants over time and the value of the covariance between the two periods depends 

only on the distance (gap or lag) between the two time periods and not the actual time at 

which the covariance is computed. In the time series literature, such a stochastic process 

is known as a weakly stationary or covariance stationary process (Gujarati, Porter & 

Gunasekar 2009). A special type of stochastic process is purely random or white noise, 

process. A white noise process has a zero mean and a constant variance. A White noise 

process is serially uncorrelated. The Random Walk Model (RWM), given by formula   

(3-12) is a white noise process.  

ttt YY  1          (3-12) 

The Auto Correlation Function (ACF) and Unit Root Tests are used to test the stationary 

of a time series. The ACF of a white noise is shown in the Figure 3-3; 
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Figure 3.3: ACF of a White Noise 

A White noise process is a stationary process, but has no significant lags in ACF as there 

are no serial correlations in the series. 

Unit Root Test 

Markov first order autoregressive model is given by equation (3-13);  

ttt YY   1          (3-13) 

The hypothesis test for ρ is known as the unit root test, where; 

H0: ρ=1, H1: ρ <1 

If the null hypothesis is rejected, series {Yt} is said to be stationary, if not {Yt} resembles 

a random walk model. However, the above hypothesis test cannot be performed by a       



t-test, because the t-test is biased in the case of a unit root (Gujarati et.al. 2009). 

Adjusting equation (3-13); 
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The Augmented Dickey-Fuller Test (ADFT) is one of the tests used for unit root, as 

follows;  

H0: δ=0, H1: δ < 0 

If the null hypothesis is not rejected, then ρ < 1; the series has a unit root. Then it 

concludes that the series is not covariance stationary.  

The MATLAB syntax for ADFT is;  

H0: The unit root exists,  H1: The unit root does not exist 

[h, pValue, stat, cValue, reg]= adftest(Y) 

The result, h = 1; indicates that this test rejects the null hypothesis of a unit root against 

the autoregressive alternative. Then it concludes that the series is covariance stationary.  

General Linear Processes (GLP) 



A General Linear Process is a stationary stochastic process {Yt} which can be represented 

as a weighted linear combination of the present and past terms of a white noise. These 

include Auto Regressive (AR), Moving Average (MA), Auto Regressive Moving 

Average (ARMA) and Auto Regressive Integrated Moving Average (ARIMA). 

ARp Model 

The Auto Regressive Process {Yt} of order p has the model;  
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Where Yt-i are past observations of random variable Yt. 

MAq Model 

The Moving Average Process {Yt} of order q has the model; 
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Where εt-i are past errors of random variable Yt. 

 

ARMA p,q Model 

A model containing both AR and MA parts is known as a mixed model or the Auto 

Regressive Moving Average (ARMA) model. ARMA (p,q) model is:  
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ARIMA p,d,q Model 

 ARMA model is not valid if the series is not stationary; therefore, the differences are 

taken in order to achieve the stationary. Order of difference is given by d. The model is 

called the Auto Regressive Integrated Moving Average model which is given by the 

equation (2-17): tqt

d

p BYB  )()( 
 

Model Validation Methods 

Goodness of fit tests and measurements of errors were used in the model validation of the 

study. The goodness of fit of a statistical model describes how well it fits a set of 

observations. The plots of residuals versus fits, Auto Correlation Functions (ACF) and 

Partial Autocorrelation Functions (PACF) of residuals and Ljung-Box Q statistics (LBQ) 

were used to test the independence of residuals. Histogram of residuals, Normal 

probability plot of residuals and Anderson Darling test were used to test the normality of 

residuals. 

Measurements of Forecasting Errors 

Forecasting is a part of a larger process of planning, controlling and/ or optimization. 

Forecast is a point estimate, interval estimate or a probability estimate. One of the 

fundamental assumptions of statistical forecasting methods is that an actual value consists 

of a forecast plus an error; In other words,   “Error = Actual value – Forecast”. This error 

http://en.wikipedia.org/wiki/Statistical_model


component is known as the residual. A good forecasting model should have a minimum 

average of absolute error and zero average of error mean because it should over forecast 

and under forecast approximately the same (Stephen, 1998). 

Measuring errors is vital in the forecasting process. The measurements of errors are divided into two parts; the 

Absolute measures of errors and the Relative measures of errors. Some absolute measures of errors are; 

Mean Error (ME), Mean Absolute Deviation (MAD), Sum of Squared Errors (SSE), Root 

Mean Squared Error (RMSE) and Residual Standard Error (RSE). The absolute measures 

of errors are very much dependent on the scale of measurement of the dependent 

variable. Also these measures do not allow comparisons of results over time or between 

time series. The relative measures of errors are capable in avoiding these disadvantages. 

Some relative measures of errors are: Percentage Error (PE), Mean Percentage Error 

(MPE) and Mean Absolute Percentage Error (MAPE). However, relative measures of 

errors mislead when data values are extremely small (Stephen, 1998). Also relative measures become 

undefined when data values are equal to zero. As such absolute measures of errors are better to 

be used in such a situation. Stock returns, defined by formulae (3-1), (3-2) and (3-3) 

contain zero values. Therefore, relative measures of errors were not used in the study.  

3.4 Pattern Recognition of Stock Returns  

Pattern recognition helps to spot the suitable forecasting techniques. In this study, Box- 

plots, Time series plots and Auto Correlation Functions (ACF) were used for pattern 

recognition.  

3.5 Identification of Covariance Structure of Sri Lankan Share Market Returns   



Firstly, the covariance structure of sector returns and the total market were studied. Then 

the covariance between individual company returns and corresponding sector returns, the 

covariance between individual company returns and the total market returns were studied. 

Hence the individual company returns were modeled on the corresponding sector returns.  

 

 

3.6 ARIMA Models on Forecasting Stock Returns 

Covariance stationary of a series {Yt} is mandatory in ARIMA model testing. Differenced 

series are obtained and check for stationary when the original series does not meet the 

criteria. Differenced series are defined as follows; 

First differenced series:  tttt YBYYY )1(1
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Second differenced series:  
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Where, B is the Back Shift operator and BYt= Yt-1. In general ARIMA procedure does not 

go beyond the third difference. The Auto Correlation Function (ACF), Partial Auto 

Correlation Function (PACF) and unit root tests are used to test the stationary of a series. 

When the stationary is confirmed, ACF and PACF are used to spot the suitable ARIMA 

models for testing. For example: if the first difference series is stationary, there exist a 



single significant spike at lag 1 in ACF and exponential decline in PACF, then ARIMA 

(0, 1, 1) would be a suitable model. Table 3-1 gives some rules of thumbs used in 

ARIMA model testing (Stephen, 1998).  

ARIMA models were tested on the random sample of fifty companies. 

Table 3.1: Behavior of ACFs and PACFs in ARIMA Process 

Process ACFs PACFs 

 
ARIMA (0,0,0) 

 

No significant lags No significant lags 

ARIMA (0,1,0) Linear decline at lag 1, with many 

lags significant 

Single significant spike at lag 1 

ARIMA (1,0,0) 

ϕ1> 0 

Exponential decline, with first 

two or more lags significant 

Single significant spike at lag 1 

ARIMA (1,0,0) 

ϕ1< 0 

Alternating exponential decline, 

with a negative ACF(1) 

Single significant negative spike 

at lag 1 ARIMA (0,0,1) 

θ1> 0 

Single significant negative spike 

at lag 1 

Exponential decline, with first 

few lags significant ARIMA (0,0,1) 

θ1< 0 

Single significant positive spike 

at lag 1 

Alternating exponential decline 

 

Auto Correlation Functions (ACF) and Partial Autocorrelation Functions (PACF) were 

obtained to test the stationary of the series and to test whether the series follow trend or 

seasonal patterns. Augmented Dickey Fuller test was used to confirm the stationary of the 

series. When the stationary was confirmed, several ARIMA models were tested on each 

series and the best fitting model was selected by comparing MSE, MAD and the results 

of goodness of fit tests. 



3.7 Fourier Transformation on Forecasting Returns  

Fourier transformation (FT) can be used to transform a real valued function f(x) into 

series of trigonometric functions (Philippe, 2008). FT has two versions; discrete 

transformation and continuous transformation. The discrete version of Fourier 

transformation is;  

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According to De Moivre’s theorem;    kike k sin   cos 
   (3-21) 

Where, i is a complex number. Therefore f(x) can be written as: 
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Whare ak and bk are amplitudes, k is the harmonic of oscillation. The highest harmonic 

(k) is defined as (Stephen, 1998);  
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The Fourier transformation is incorporated to a uniform circular motion of a particle in a 

horizontal circle and basic trigonometric ratios.  

A particle P, which is moving in a horizontal circle of centre O and radius a is given in 

Figure 3.4. The ω is the angular speed of the particle; 



 

 

Figure 3.4: Motion of a particle in a horizontal circle 

Angular speed is defined as the rate of change of the angle with respect to time. Then; 
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Hence, t            (3-23) 

Substitute (3-23) in (3-22);  tkbtkaf k
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At one complete circle θ=2π radians. Therefore, the time taken for one complete circle 

(T) is given by:  /2T         (3-25)  

Figure 3.5 and Figure 3.6 clearly show how to incorporate a particle in horizontal circular 

motion to trigonometric functions; 



 

 

Figure 3.5: sine function and reference circle 

 

Figure 3.6: cosine function and reference circle 

Reference to Figure (3-4); ) sin (cos ji  


aop , where, a is the amplitude or wave 

height. A wave with constant amplitude is defined as a regular wave and a wave with 

variable amplitude is known as an irregular wave.        

The concept of Fourier transformation is applied in the present study for explaining 

returns. In circular motion, the time taken for one complete circle is known as the period 

of oscillation. In other words, the period of oscillation is equal to the time between two 

peaks or troughs of sine or cosine function. If a time series follows a wave with f peaks in 

N observations, its period of oscillation can be given as;        
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Equating (3-25) and (3-26);  
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Then, 
N

f
 2          (3-27) 

Hence the return at time t (Rt) was modeled as; 
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The model (3-28) was named as “Circular Model”. 

The MATLAB program given in Appendix 1.2 was used for peak identification and ω 

calculation. The linear independence of trigonometric series; sin(kωt) and cos(kωt) were 

confirmed by correlation analysis. The Multiple regression technique was adopted for 

estimation of amplitudes ak and bk. The Circular model was tested on the sample of 50 

companies.   

3.8 Test the Existence of ARCH Effect on Returns 

 An uncorrelated time series can still be serially dependent due to a dynamic conditional 

variance process. A time series exhibiting conditional heteroscedasticity or 



autocorrelation in the squared series is said to have ARCH effects. Engle's ARCH test is 

a Lagrange multiplier test to assess the significance of ARCH effects. 

Consider a time series; tttY          (3-29) 

 Where μt is the conditional mean of the process, and εt is an innovation process with 

mean zero. Suppose the innovations are generated as, ttt Z     (3-30)  

Where, Zt is an independent and identically distributed process with mean 0 and variance 

1. Thus, 0)( httE   , for all lags h≠0 and the innovations are uncorrelated. 

Define the residual series 
^

ttt Ye        (3-31) 

If all autocorrelation in the original series, Yt, is accounted for in the conditional mean 

model, then the residuals are uncorrelated with mean zero. However, the residuals can 

still be serially dependent. 

The Engle's ARCH test is such that; 
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The test is based on the F statistic. The MATLAB syntax for ARCH test is such that; 

[h,p,fStat,crit] = archtest(e,'Lags',m) 

The result h = 1 indicates the rejection of null hypothesis of no conditional 

heteroscedasticity and conclude that there are significant ARCH effects in the series. 



3.9 Development of Stability Indicator for Returns  

The development of a stability indicator was based on the uniform circular motion of a 

particle in a horizontal circle (Newton’s law). 

Theory of Uniform Circular Motion of a Particle in a Horizontal Circle  

Reference to Figure (3.4), position vector of a particle at time t is; 

) sin (cos sin cos jiji  
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Radius of the circle (a) is a constant; therefore the position vector of the particle at time is 

a function of θ. But θ vary with time. As such, the magnitude of the velocity or speed of 

the particle can be obtained by differentiating the position vector of the particle with 

respect to t and the acceleration of the particle can be obtained by differentiating the 

velocity vector, with respect to t; 
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Hence;  av           (3-32) 



The acceleration of the particle is obtained by differentiating the velocity. That is 
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When the particle moves in a circle, it is constantly changing its direction. At all 

instances, the particle is moving tangent to the circle. Since the direction of the velocity 

vector is the same as the direction of the motion, the velocity vector is directed tangent to 

the circle; as such, the acceleration of the particle also tangent to the circle. Even though 

the particle is moving under the acceleration with a changing direction, it does not leave 

the circular path. Therefore, there should be force acting towards the centre of the circle 

which prevents particle leaving its locus. This force is named as the centripetal force 

(Hooker, Jennings, Littlewood, Moran and Pateman, 2009). 

Using the Newton’s second law of motion; aF m towards the centre; 
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The centripetal force (F) is directly proportional to the mass and the square of the 

velocity, but inversely proportional to the radius of the circle. In other words the stability 

of a motion of a particle depends on the mass of the particle, its velocity and the radius of 

the circular motion.  



It can be shown that the radius of the reference circle in Figure (3.5) or Figure (3.6) is 

equal to the amplitude or height of the wave.  

Proof: Radius of the reference circle = Amplitude of the wave 

Reference to Figure (1), position of the particle at time t is; 

P= (x, y) = (a cosθ, a sinθ) 

Consider y=a sinθ function; 

The magnitude of the maximum or minimum value of a sine function is the 

amplitude of the wave. The maxima of sine functions occur at θ=2nπ ± (π/2) for 

n=0,1,2,3, and the minima occur at θ=2nπ ± (3π/2) for n=0,1,2,3,… 

When θ=π/2, maximum value of y; ymax = a.sin (π/2) = a 

When θ=3π/2, minimum value of y; ymin = a.sin (3π/2) = -a 

Therefore, | ymax|=| ymin|= a = amplitude 

Consider y=a cosθ function; 

The magnitude of the maximum or minimum value of a cosine function is the 

amplitude of the wave. The maxima of cosine functions occur at θ=2nπ  for 

n=0,1,2,3, and the minima occur at θ=2nπ ± (π) for n=0,1,2,3,… 

When θ=0, maximum value of y; ymax = a.cos (π/2) = a 



When θ=π, minimum value of y; ymin =a=.cos (π) = -a 

Therefore, | ymax|=| ymin|= a = amplitude. 

The study shows that the share returns of a company follow a uniform circular motion. If 

mass of the particle (per share return) assumed to be 1, then; 

   
2

,,, . tititi rF           (3-35) 

Where Fi,t is the force making returns to be in a circular motion of a company i at time t, 

tir ,  is the radius of the circular motion of ith particle  at time t and ωi,t is the angular speed 

of the circular motion at time t. As such, Fi,t can be taken as the stability indicator of the 

market performances.  That is; larger the Fi,t, higher the relative stability of a company in 

market performances. 

From equation (3-28);  tk
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For a fitted model; 

)cossin(...)cossin(      

)cossin(

11

1

tnbtnatbta

tkbtkaR

nn

k

n

k

kt












    (3-36) 



According to (3-36), the motion comprises of several circular motions with radius ai, and 

bi. Hence tir , was taken as the average of the radii; 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Statistical Software Used for the Analysis 

The data analysis was focused to develop statistical models for forecasting Sri Lankan 

stock returns and to develop an indicator to measure the risk of returns of individual 

companies. Statistical software; MATLAB 2013b, MINITAB 17 and SPSS 21 were used 

in the data analysis. 

Outliers of the data were adjusted by the MATLAB program given in Appendix 1.1 and 

the adjusted data were used in the analysis. 

4.2 Pattern Recognition of Stock Returns 

This study was focused on univariate time series analysis. Univariate statistical modeling 

procedure is based on the past internal patterns; as such pattern recognition was 

conducted to spot the suitable techniques for forecasting returns. Total Market (TM) 

returns, returns of twenty business sectors and returns of random sample of fifty 

companies were studied with the help of time series plots, histograms, box plots, normal 

probability plots, ACF and PACF. The Figure 4.1 is the time series plot of the total 

market returns. 
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Figure 4.1: Time Series Plot of Total Market Returns 

Figure 4.1 does not show any increasing or decreasing trend. Returns fluctuate between   

-15 and +15, shows a wave like pattern.  
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Figure 4.2: Histogram of TM Returns      Figure 4.3: Box- plot of TM Returns 



Figure 4.2 is the Histogram and Figure 4.3 is the box-plot of Total Market(TM) returns. 

Figures show an almost symmetrical distribution for TM returns. But Probability plot of 

returns (Figure 4.4) and the P value of the Anderson Darling test (0.043 < 0.05) do not 

confirm the Normality of total market returns.  
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Figure 4.4: Probability Plot of Returns 

Same procedure was repeated for business sectors and sample of companies. Time series 

plots are given in Appendix 2. According to the results; returns of majority of the cases 

were normally distributed. No increasing or decreasing trends were identified in stock 

returns of business sectors or individual companies. Returns of sectors as well as 

individual companies fluctuate within horizontal bands. Therefore it was concluded that 

the Sri Lankan stock market returns have wave like patterns. 

4.3 Identification of Covariance Structure of Sri Lankan Share Market Returns  



The literature review of the study gives empirical evidences for the incapability of the 

CAPM in forecasting returns. But, the CAPM model is a theoretically developed model. 

Therefore the principle assertion of CAPM, the linear relationship between the total 

market returns and the individual company returns cannot be easily rejected. Hence, the 

covariance structure of the Sri Lankan stock market returns was analyzed. Markowitz 

(1952) was interested in covariance between the individual company returns and the total 

market returns, but this study analyzed the; covariance between the sector returns and the 

total market returns, covariance between the individual company returns and the total 

market returns and covariance between the individual company returns and 

corresponding sector returns. 

4.3.1 Covariance between Sector Returns and Total Market Returns 

The covariance and correlation analysis were conducted between the sector returns and 

the total market returns. Summary of the outputs are given in the Table 4.1. The returns 

of the twenty business sectors were positively covariate with the returns of the total 

market. Returns of sectors BFI, DIV, BFT and MFG are strongly related to the market. 

The P-values correspond to the correlation analyses were less than the significance level 

(0.05). There exist a linear relationship between the sector returns and the total market 

returns.  

Table 4.1: Summary of Covariance / Correlation Analysis between Sector Returns and 

Total Market Returns 



Sector Covariance Pearson Correlation P value  

PLT 28.53 0.62 < 0.001 

OIL 3.93 0.49 < 0.001 

L&P 38.60 0.73 < 0.001 

MTR 33.83 0.64 < 0.001 

MFG 41.23 0.83 < 0.001 

TLE 58.65 0.71 < 0.001 

S&S 41.04 0.38 < 0.001 

TRD 76.52 0.74 < 0.001 

SRV 66.85 0.66 < 0.001 

P&E 35.04 0.42 < 0.001 

INV 88.86 0.63 < 0.001 

H&T 54.25 0.77 < 0.001 

HLT 36.33 0.53 < 0.001 

F&T 60.10 0.62 < 0.001 

IT 64.46 0.39 < 0.001 

DIV 38.39 0.89 < 0.001 

C&E 50.13 0.61 < 0.001 

C&P 66.57 0.79 < 0.001 

BFT 50.65 0.87 < 0.001 

BFI 68.44 0.90 < 0.001 

 

4.3.2 Covariance between Individual Company Returns and Total Market Returns 

A simple random sample of twenty five companies was selected for the analysis. 

Summary of the analysis is given in Table 4.2.  



Table 4.2: Summary of Covariance / Correlation Analysis between Individual Company 

Returns and Total Market Returns 

Company 

 

Covariance Pearson Correlation P value  
EDEN 22.5 0.34 0.001 

GHLL 3.01 0.05 0.460 

PEGA 1.83 0.02 0.771 

TAJ 26.7 0.44 < 0.001 

TRAN -0.62 -0.01 0.870 

HUNA 26.41 0.40 0.001 

PALM 5.83 0.09 0.371 

SIGI 9.62 0.19 < 0.001 

AHOT 35.51 0.50 < 0.001 

AHUN 22.31 0.35 < 0.001 

ABAN 13.83 0.17 0.011 

ACL 5.34 0.09 0.190 

KELA 0.14 0.02 0.841 

COMB -1.82 -0.03 0.622 

DFCC -3.57 -0.06 0.351 

HNB -1.63 -0.05 0.521 

AGAL 1.86 0.47 0.000 

BOGA 1.52 0.32 0.060 

WATA 2.26 0.52 < 0.001 

ACME 1.76 0.03 0.700 

DISTIL 7.25 0.12 0.260 

CLAND -4.39 -0.06 0.541 

KELSEY -0.38 -0.03 0.770 

TWOD -0.57 -0.08 0.461 

DIAL 0.34 0.01 0.990 

 

Some of the companies have positive covariance with the total market returns, while the 

others have negative covariance with the total market returns. However, only 32% of the 

companies have significant linear relationship with the total market returns. 



There are not enough evidences to conclude that the individual company returns move 

with the total market returns. This is contradictory to the idea of Markowitz (1952), the 

existence of linear relationship between the individual company returns and the total 

market returns. As such, inefficiency of the CAPM in forecasting individual company 

returns and incapability of β in measuring risk of individual company returns were 

confirmed for the Sri Lankan share market.  

4.3.3 Covariance between Individual Company Returns and Sector Returns 

A random sample of twenty five companies was used for the data analysis. Covariance 

and Pearson’s correlation coefficients were obtained between individual company returns 

and sector returns. Summary of the analysis is given in Table 4.3. Returns of all the 

companies were positively covariate with the corresponding sector returns. Sample 

correlation coefficients for companies; DFCC, COMB and AGAL were strong, but weak 

for other companies. Still, P values of correlation analysis were less than the significance 

level (0.05) except for companies; PEGA, ACME and CLAND. It was concluded that the 

individual company returns and the corresponding sector returns are linearly related. 

Hence, it was attempted to forecast the individual company returns on corresponding 

sector returns.  

Individual company returns are not associated with the total market returns, but 

associated with corresponding sector returns. It means individual company returns are not 

directly influenced by the macro level changes of the economy, but influenced by the 

micro level changes. 



Table 4.3: Summary of Covariance / Correlation Analysis between Individual Company 

and Sector Returns,  

Company Covariance 

 

Pearson correlation P value  
EDEN 33.2 0.40 0.001 

GHLL 32.3 0.40 < 0.001 

PEGA 8.6 0.09 0.291 

TAJ 21.1 0.40 < 0.001 

TRAN 6.4 0.13 0.060 

HUNA 23.9 0.40 < 0.001 

PALM 31.4 0.30 0.000 

SIGI 27.4 0.20 0.010 

AHOT 44.7 0.50 < 0.001 

AHUN 37.9 0.40 < 0.001 

ABAN 10.8 0.14 0.041 

ACL 8.8 0.15 0.021 

ACME 0.2 0.01 0.900 

KELANI 3.2 0.54 0.001 

SUGAR 2.3 0.51 < 0.001 

COMB 38.2 0.77 < 0.001 

DFCC 40.9 0.81 0.001 

HNB 10.38 0.25 < 0.001 

AGAL 3.73 0.72 < 0.001 

BOGA 3.00 0.54 < 0.001 

WATA 3.19 0.61 < 0.001 

DISTIL 12.3 0.30 < 0.001 

CLAND 7.22 0.10 0.351 

KELSEY 6.81 0.49 0.001 

TWOD 3.58 0.55 < 0.001 

 

4.3.4 Model Individual Company Returns on Sector Returns  

Individual company returns (Rt) were calculated by formula (3-1) and Sector returns (RS) 

were calculated by formula (3-2). Formula (3-1) comprises share prices and formula (3-2) 



comprises monthly sector indices. Sector indices of CSE are market capitalization 

indices, calculated by the formula,   
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Where,  itP  = Price of stock i at time t, itQ  = Total outstanding shares for stock i at time   

t, 0iP = Price of stock i on base period and 0iQ  = Total outstanding shares for stock i on 

base period.  

Linear regression model is;   Si RR 10      (4-2) 

Where Ri is the individual company return and RS is the sector return. It was tested on 

sample of twenty companies. RMSE and MAD were used as measurements of errors. 

Two thirds of the data sets were used for model fitting and one third of the data set was 

used for model verification.  Residual plots, ACF and PACF of residuals, Anderson 

Darling test and Durbin Watson test were used in residual analysis. Hypothesis test for 

regression coefficient is; H0: β1=0, H1: β1 ≠ 0, 

For example: fitted model for company GHLL is: 

THGHLL RR &323.0988.0 
       (4-3) 



Where, RGHLL is the returns of the company and RH&T are the returns of the sector. P value 

of ANOVA (0.000) was less than the significance level (0.05), confirmed that the 

regression coefficient does not equal to zero. The RMSE and the MAD were small in 

model fitting and forecasting. The Durbin Watson test statistic (1.9557) was close to 2 

confirmed the independence of residuals. The P-value of the Anderson Darling test (0.01) 

was less than the significance level (0.05); therefore normality of residuals was not 

confirmed. The Figure 4.5 shows that the pattern of forecasted returns is not similar to the 

pattern of actual returns. Hence, the fitted model was not recommended for forecasting. 
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Figure 4.5: Actual Vs Forecasts-GHLL 

Same procedure was repeated for the sample of companies. The Table 4.4 gives the 

summary of regression models of H&T;  

Table 4.4: Summary of Regression Analysis- Sector H&T 



Company Model Model 

Fitting 

Model 

Verification 

Remarks of residuals 

  

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
 

 

GHLL 

 

THGHLL RR &323.0988.0 

 

8.0 6.0 8.4 7.0 Not normal, Independent 

EDEN 

 

THEDEN RR &48.075.1 
 

8.3 6.3 6.0 4.7 Not normal, Independent 

PEGA Model does not fit.  

 

     

TAJ 
THTAJ RR &29.016.0 

 
9.3 7.0 7.2 5.6 Not normal,  independent 

TRAN Model does not fit.  

 

     

HUNA 
THHUNA RR &34.004.0 

 
7.7 6.1 5.3 3.8 Normal, Independent 

PALM 
THPALM RR &45.029.0 

 
9.2 7.2 9.2 7.5 Normal, Not independent 

SIGI 
THSIGI RR &51.04.2 

 
8.9 6.6 7.0 5.5 Normal, Independent 

AHOT 
THAHOT RR &62.015.1 

 
7.5 5.8 4.1 3.3 Not normal, Independent 

AHUN 

 

THAHUN RR &49.082.0 
 

7.9 6.1 4.7 3.5 Normal, Independent 

 

For companies PEGA and TRAN, the P- values of ANOVA were greater than the 

significance level. As such the regression model does not fit. The RMSE and the MAD 

were small in all the fitted models. But the assumptions of the residuals were not satisfied 

in companies; GHLL, EDEN, TAJ, PALM and AHOT. As such the regression model was 

well fitted only for four companies. 



The Table 4.5 gives the summary of regression analysis for the companies of the other 

sectors. For company KELA, the P- value of ANOVA was greater than the significance 

level. As such the regression model does not fit.  For the companies; COMB and WATA, 

the assumptions of the residuals were not met. Accordingly, the method is successful 

only in the eleven out of the twenty companies.  

In the above analysis, individual company returns were regressed on sector returns. These 

sector returns were calculated by using the corresponding sector indices. As such, the 

reliability of this method depends on the reliability of sector indices. One of the 

weaknesses identified in market capitalization indices are the weighting system. In these 

indices, total outstanding shares of a company are the weights. This allows the price 

movements of large companies to have a greater impact on the index (Samarakoon, 

2010). Therefore forecasting individual company returns on corresponding sector returns 

is not successful. 

 

Table 4.5: Summary of Regression Analysis- Sectors BFI, PLT, MFG, BFT, L&P, TLE 

Sector Company Model Model 

Fitting 

Model 

Verification 

Remarks of 

residuals 

   

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
 

 

BFI COMB 
BFICOMBANK RR 88.006.0 

 

5.0 3.4 4.4 2.9 Not normal or 

independent 



 DFCC 

 

BFIDFCC RR 11.105.1 
 

4.5 3.2 5.1 3.6 Normal, 

Independent 

 HNB 

 

BFIHNB RR 47.066.0 

 

6.6 5.4 5.4 5.4 Normal, 

Independent 

PLT AGAL 
PLTAGAL RR 06.013.0 

 
0.4 0.4 0.4 0.3 Normal, 

Independent 

 BOGA 
PLTBOGA RR 06.008.0 

 
0.5 0.4 0.6 0.4 Normal, 

Independent 

 WATA 
PLTWATA RR 05.014.0 

 
0.4 0.3 0.6 0.6 Not normal or 

Independent 

MFG KELA Model does not fit.  

 

     

BFT DISTIL 
BFTDIST RR 40.092.0 

 
7.3 5.8 5.2 4.2 Normal, 

Independent 

L&P KELSEY 
PLKELS RR &93.034.0 

 
7.9 6.1 7.4 6.0 Normal, 

Independent 

TLE DIAL 
TELDIAL RR 39.009.1 

 
5.1 4.4 4.4 3.8 Normal, 

Independent 

 

4.4 ARIMA Models on Forecasting Returns 

The ARIMA model was tested on sample of fifty companies, representing ten business 

sectors. Monthly percentage returns were used for the analysis.  Stationary of the series 

were tested by: ACFs, PACFs and the Augmented Dickey Fuller Test (ADFT). A part of 

the ADFT test results are given in Appendix 3.1. Two thirds of a data set was used for 

model fitting and one third of the data set was used for model verification. The histogram 



of residuals, normal probability plot of residuals and the Anderson Darling test were used 

to test the normality of residuals. The graph of residual Vs fits, the ACF and the PACF of 

residuals and the LBQ statistics were used to test the independence of residuals. Graphs 

of actual Vs forecasts were obtained to see whether the forecasted returns follow the 

pattern of actual returns for the verification period.   

Table 4.6 is the summary of best fitted models of the sector H&T. One or two of the 

assumptions of the residuals were not satisfied by four of the models; TAJ, TRAN, 

AHOT and AHUN. As such they are not valid models for forecasting. Measurements of 

errors were small in all the well fitted models, in both model fitting and verification. 

Therefore ARIMA models are successful in forecasting returns of the individual 

companies of sector H&T. But, the pattern of forecasted returns was linear, different from 

the patterns of actual returns.  

 

Table 4.6: Summary of ARIMA Models for Sector H&T 

Company Best Fitting 

ARIMA 

(p,d,q) 

Model 

Model Fitting Model 

Verification 

Remarks 

of Residuals 

 

  RMSE MAD RMSE MAD 

 

 

EDEN (0,1,1) 8.2 6.8 

 

7.8 

 

6.3 

 

Normal, independent 

GHLL (0,0,1) 8.1 6.4 

 

7.5 6.3 

 

Normal, independent 



PEGA (0,1,1) 9.1 7.2 

 

6.8 5.4 

 

Normal, independent 

TAJ (0,1,1) 8.4 6.7 7.4 6.3 Not normal / not 

independent 

TRAN (0,1,1) 9.1 5.7 7.2 5.2 Normal / not independent 

HUNA (0,1,1) 7.2 5.8 3.6 2.8 Normal, independent 

PALM (0,1,1) 7.4 5.7 8.4 6.7 Normal, independent 

SIGI (0,1,1) 7.5 6.8 4.6 3.5 Normal, independent 

AHOT (0,1,1) 6.8 5.7 6.1 4.9 Not normal / not 

independent 

AHUN (0,1,1) 8.1 5.7 7.2 5.2 Not normal / not 

independent 

 

Table 4.7 is the summary of best fitted models of the sector MFG. Assumptions of the 

residuals were not satisfied by four of the fitted models; as such they are not valid models 

for forecasting. Measurements of errors were small in all the fitted models, both model 

fitting and verification. The ARIMA (0,1,1) model was fit in to seven out of eleven 

companies of sector MFG. But, the pattern of forecasted returns was linear, different 

from the patterns of actual returns.  

Table 4.7: Summary of ARIMA Models- Sector MFG 

Company Best Fitting 

ARIMA (p,d,q) 

Model 

Model Fitting Model 

Verification 

Remarks 

of Residuals 



  RMSE MAD RMSE MAD  

ABAN (0,1,1) 5.9 4.5 7.8 6.4 

 

Normal, independent 

 
ACL (0,1,1) 7.3 6.9 6.8 5.4 Normal / not independent 

ACME (0,1,1) 8.4 6.7 9.3 8.1 Normal, independent 

 
KELA (0,1,1) 8.3 5.9 6.8 5.4 Normal, not independent 

LMF (0,1,1) 8.3 6.9 6.8 5.4 Normal, independent 

 
TOKY (0,1,1) 6.7 5.2 

 

5.8 4.9 

 

Normal, independent 

 
WALL (0,1,1) 7.1 5.9 9.0 6.6 Normal, independent 

 
ROCEL (0,1,1) 8.8 7.9 6.8 6.4 Not normal / not 

independent BLUE (0,1,1) 9.3 7.1 

 

9.7 7.7 Normal, independent 

 
BOGAL (0,1,1) 8.8 6.5 8.4 7.3 Normal, independent 

 
CERA (0,1,1) 8.4 6.4 5.5 4.4 Not Normal or independent 

 

Summary of ARIMA Models for Sector BFI is given below in Table 4.8; 

Table 4.8: Summary of ARIMA Models- Sector BFI 

Company Best Fitting 

ARIMA (p,d,q) 

Model  

Model Fitting Model 

Verification 

Remarks 

of Residuals 

 

  RMSE MAD RMSE MAD  

ALLI (0,1,1) 6.9 5.3 7.3 6.4 Normal, independent 



ASIA (0,1,1) 9.1 7.3 8.8 6.5 Normal,   independent 

COMB (0,1,1) 8.3 

 

6.5 4.7 3.7 Normal, independent 

DFCC (0,1,1) 8.4 6.6 6.5 2 Normal,  Independent 

HNB (0,0,1) 5.2 4.4 4.6 3.6 

 

Normal, independent 

LFIN (0,1,1) 8.1 6.6 

 

6.3 5.7 

 

Normal, independent 

 
LOLC (0,1,1) 9.8 7.7 

 

9.1 7.3 Normal, independent 

 
SAMP (0,1,1) 7.8 

 

6.1 

 

6.7 5.6 Normal, independent 

 
HASU (0,0,1) 6.6 5.3 5.5 0.3 Normal, independent 

 
 

The Bank Finance and Insurance (BFI) sector is considered as the most important sector 

of the economy of a country. From the point of view of capital market experts, the sector 

BFI of the Sri Lankan share market is highly volatile and unpredictable. But the results in 

Table 4.8 do not agree with the claim. It shows that the ARIMA model is successful in 

forecasting returns of the sector BFI. However, the pattern of forecast was different from 

the actual returns.  

The business sector L&P of the CSE has twenty two companies. The sample consist five 

companies and the ARIMA model was successful in four of them. Forecasting errors 

were small in all the fitted models. 

 

 



Table 4.9: Summary of ARIMA Models- Sector L&P 

Company Best Fitting 

ARIMA 

(p,d,q) Model 

Model Fitting Model 

Verification 

Remarks 

of Residuals 

  RMSE MAD RMSE MAD  

CLAND (0,1,1) 8.0 6.2 6.5 5.1 Normal, independent 

KELSEY (0,0,1) 7.9 6.3 8.7 7.0 Not normal,  independent 

PDL (0,1,1) 5.9 4.8 5.4 4.5 Normal, independent 

EAST (0,1,1) 11.3 9.0 9.8 7.8 Normal, independent 

EQIT (0,0,1) 8.9 6.3 8.7 7.2 Normal, independent 

 

Eighteen companies were listed in the Plantation sector of the CSE. The sample of the 

study contains four of them. According to Table 4.10, forecasting errors of the fitted 

models were small in both model fitting and verification. Residuals of the models were 

independent and normally distributed. Therefore the ARIMA (0, 1, 1) model is suitable 

for forecasting returns of individual companies of the sector PLT. . However, the pattern 

of forecast was different from the actual returns.  

 

 

 



Table 4.10: Summary of ARIMA Models- Sector PLT 

Company Best Fitting 

ARIMA 

(p,d,q) 

Model 

Model Fitting Model 

Verification 

Remarks 

of Residuals 

  RMSE MAD RMSE MAD  

AGAL (0,1,1) 8.2 

 

6.6 6.8 5.9 

 

Normal, independent 

 
BALA (0,1,1) 8.7 6.7 8.2 6.2 

 

Normal, independent 

 
BOGA (0,1,1) 9.6 7.6 

 

7.6 6.3 Normal, independent 

 
WATA (0,1,1) 7.6 5.3 7.2 5.9 Normal, independent 

 
 

The Table 4.11 summarizes the ARIMA outputs for sectors; BFT, DIV, C&P, MTR and 

TLE. The ARIMA model was well fitted for; two companies of the sector BFT, two 

companies of the sector DIV, and two companies of the sector C&P and so on.  

 

 

 

 



Table 4.11: Summary of ARIMA - Sectors BFT, DIV, C&P, MTR and TLE 

Sector Company Best Fitting 

ARIMA 

(p,d,q)  Model 

Model Fitting Model 

Verification 

Remarks 

of Residuals 

   RMSE MAD RMSE MAD  

BFT BREW (0,1,1) 8.3 6.8 6.5 5.4 Normal, independent 

 DISTIL (0,0,1) 8.4 7.3 6.2 4.7 Normal, not dependent 

 NESTL (0,1,2) 4.6 3.6 4.3 3.2 Normal, independent 

DIV HAYL (0,1,1) 7.5 5.9 6.5 5.9 Normal, independent 

 JKH (0,1,1) 7.4 6.3 5.2 3.7 Normal, Independent 

 RICHA (0,1,1) 8.8 5.3 7.6 4.9 Not normal, 

independent 
C&P LANK (0,0,1) 10.3 8.0 8.5 7.0 Normal, independent 

 CIC (0,0,1) 7.7 6.0 8.6 7.3 Normal, independent 

MTR DIMO (0,0,1) 6.8 5.3 6.6 4.9 Normal, independent 

  AMW (0,0,1) 6.9 6.3 6.6 5.9 Not normal, dependent 

TLE DIAL (0,1,1) 5.0 3.9 8.8 7.5 Normal, Independent 

 



The ARIMA model was suitable for forecasting 78% of the sample of companies. The 

ARIMA (0, 1, 1) was the mostly fitted model. It is clear that the stock returns of the Sri 

Lankan companies depend on past errors.  

Literature gives evidence for the forecasting ability of the ARIMA in stock returns for 

several countries. Result of the present study also confirms the same for the Sri Lankan 

context. However, forecasted values of all the models followed linear patterns, not the 

patterns of the actual returns. Ayodele et al. (2014-b) also pointed out the same weakness 

in forecasting share prices. This is a clear disadvantage of the method. 

4.5 Fourier Transformation on Forecasting Stock Returns 

Fourier transformation is a linear transformation. A transformation moves all the points 

in (x, y) plane according to some rule. A special property of the linear transformation is 

that, it involves only linear expressions of x and y (Attwood, Cope, Moran, Pateman, 

Pledger, Staley and Wilkins, 2008). Rotations, reflections and enlargements are examples 

for linear transformation. The Fourier transformation employs rotation. The discrete 

version of the Fourier transformation, given in formula (3-24) is a static model. It has 

been applied to explain the regular waves in Physics. It is modified to describe the wave 

patterns associated with randomness as shown in formula (3-28); 
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The model (3-28), which is named as the “Circular Model (CM)” was tested on sample of 

fifty companies. Amplitudes of the series, ak and bk are experimentally calculated in 

Physics. As it is not possible in the applications, this study employs multiple regression 

technique for the purpose; regressing Rt on sinkωt and coskωt for k is from 1 to 6.  

For example, the angular speed (ω) for the company EDEN was calculated by, 

Nf /2  ,  

Where f is the number of peaks and N is the number of observations in the series. 

 For EDEN, f=45 and N=200; hence ω=1.4137. Part of the Fourier transformed data is 

given in the Appendix 4.1.  The correlation analysis confirmed the independence of these 

series. Hence, Rt was regressed on them. 

tttRt  4cos42.1023cos6831.1 4sin8205.1 0.58047-    (4-4)
 

The RMSE and the MAD for the model (4-4) were small. Residuals of the model were 

normally distributed and independent. Therefore the Circular Model is suitable in 

forecasting returns of the company EDEN. Same procedure was repeated for the other 

companies. Two thirds of the data sets were used for model fitting and one third of the 

data set was used for model verification. The Circular Model was well fitted for sector 

L&P. Summary results are given in Table 4.12;  

 



Table 4.12:  Circular Model in Forecasting Returns of Sector H&T  

Company Best Fitting Model Model 

Fitting 

Model 

Verification 

Remarks of 

Residuals 

  

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
 

 

EDEN 

 

tt

tRt





4cos42.1023cos6831.1

 4sin8205.1 0.58047- 





 

7.9 6.3 5.7 4.4 Normal, 

Uncorrelated 

GHLL 

 

tosRt 40.805c- 1.4949-   8.17 6.4 6.7 5.7 Normal, 

Uncorrelated 

PEGA tRt cos2.1316  1.4882-   8.91 7.15 7.07 5.67 Normal, 

Uncorrelated 

TAJ 

tt

tRt





4cos1.20755sin465.1

 4sin2099.1 0.6397- 





 

5.87 4.61 5.79 4.36 Normal, 

Uncorrelated 

TRAN tRt sin1.5104 -0.5653   7.33 5.7 5.97 4.67 Normal, 

Uncorrelated 

HUNA tRt cos 2.5198-0.34407   6.95 5.58 3.46 2.10 Normal, 

Uncorrelated 

PALM tRt 5cos 3.6778-1.6629   8.6 6.7 8.8 7.0 Normal, 

Uncorrelated 

SIGI tRt 3sin3.08270.33287   7.47 6.02 4.07 3.36 Normal, 

Uncorrelated 

AHOT tRt 4sin1.6217 0.85139   6.46 5.50 4.36 3.47 Normal, 

Uncorrelated 

AHUN tRt 5sin1.9955-1.3307   8.61 7.06 5.84 4.40 Normal, 

Uncorrelated 

 



The fitted model for EDEN, given in (4-4) comprises three trigonometric functions; 

sin4ωt, cos3ωt and cos4ωt. In other words the motion of returns comprises three circular 

motions; circle C1 with angular speed 4ωt and radius 1.8205, circle C2 with angular 

speed 3ωt and radius 1.6831and circle C3 with angular speed 4ωt and radius 2.1024. 

Waves related to circular motions C1, C2 and C3 are given in Figure 4-3, Figure 4-4, and 

Figure 4-5 respectively;  
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Figure 4.6: Plot of Wave C1 

The wave C1 is a regular wave with the amplitude 1.8205 and the period of the 

oscillation fifteen months. The wave C2 is an irregular wave with highest amplitude 

1.6831 and the period of the oscillation five months. 
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Figure 4.7: Plot of Wave C2 

The wave C3 is a regular wave with amplitude 2.1024 and the period of the oscillation 

sixteen months. 
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Figure 4.8: Plot of Wave C3 



The sector MFG has thirty one companies and the sample contained eleven of them. The 

Circular Model (CM) was fitted for ten of them. 

Table 4.13: Circular Model in Forecasting Returns of Sector MFG 

Company Best Fitting Model Model Fitting Model 

Verification 

Remarks of 

Residuals 
  

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
  

ABAN tRt 5cos 1.73581.9194   5.7 4.5 6.7 5.2 Normal, 

Uncorrelated 
ACL tRt 4sin1.47 -0.15825-   7.34 5.88 4.80 3.69 Normal, 

Uncorrelated 
ACME tRt 4sin2.7181 -0.41894- 

 

8.21 6.62 9.68 8.24 Normal, 

Uncorrelated 
KELA 

t

tRt





5cos2.3953

 3sin8135.2 0.13136 

 

8.52 6.88 6.92 5.32 Normal, 

Uncorrelated 
TOKY 

t

tRt





5cos1.3662

 5sin34.1 0.26593 
 

6.62 5.02 5.92 4.94 Normal, 

Uncorrelated 
WALL tRt 5sin2.727-1.1735   7.05 5.57 9.05 7.31 Normal, 

Uncorrelated 
ROCEL 

t

tRt





5cos9941.3

 3sin2.46411.4475 
 

7.8 6.42 8.57 7.12 Normal, 

Uncorrelated 
BLUE tRt 3cos2.54932.3482- 

 

8.88 6.87 9.63 7.89 Normal, 

Uncorrelated 
BOGAL 

t    2.9714cos4 +t2.3434cos

+t2.3738sin+ -0.7824



tR

 

7.47 6.17 7.73 6.38 Normal, 

Uncorrelated 
CERA tRt 5sin2.674 -0.2826   8.1 6.4 5.9 4.6 Normal, 

Uncorrelated 

 

 



Table 4.14: Circular Model in Forecasting Returns of Sector BFI 

Company Best Fitting Model Model Fitting Model 

Verification 

Remarks of 

Residuals 
  

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
  

ALLI tRt 0.6092cos1.4899   7.07 5.45 6.85 5.34 Normal, 

Uncorrelated 
ASIA 

 

tRt 4sin2.9082 0.30087-   8.9 7.1 8.75 7.18 Normal, 

Uncorrelated 
DFCC 

 

tRt 2.0337cos5-0.31742   8.3 6.5 6.06 4.96 Normal, 

Uncorrelated 
HNB 

 

t1.2866cos5

-t1.601sin5-0.77154 



tR
 

5.7 4.4 4.3 3.5 Normal, 

Uncorrelated 
LFIN 

t0.cos 2.1111

+t2.3374sin6+0.21742- 



tR

 

7.89 6.48 5.76 4.35 Normal, 

Uncorrelated 
LOLC 

 

tRt 1.9094cos2 1.0022   9.7 7.6 8.8 6.8 Normal, 

Uncorrelated 
SAMP Model does not fit      

HASU tRt 2.1016sin51.0822   6.7 5.3 5.7 4.4 Normal, 

Uncorrelated 
 

The Bank Finance and Insurance (BFI) sector is considered as the most important sector 

of the economy of a country. From the point of view of capital market experts, the sector 

BFI of the Sri Lankan share market is highly volatile and unpredictable. According to the 

results in Table 4.14, the Circular Model was successful in forecasting returns of seven 

out of eight companies of the sector BFI. Patterns of the forecasts follow the patterns of 



actual returns. For the company SAMP, none of the regression coefficients were 

significantly different from zero. As such the CM was not fitted for the company SAMP.  

The Table below summarizes the analysis of the sector L&P. The CM did not fit into the 

returns of the company KELS, as none of the regression coefficients were significantly 

different from zero. But the CM was well fitted for returns of other four companies. 

Table 4.15: Circular Model in Forecasting Returns of Sector L&P 

Company Best Fitting Model Model Fitting Model 

Verification 

Remarks of 

Residuals 
  

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
  

CLAND tRt 6cos1.476 0.930-   7.8 6.1 6.9 5.6 Normal, 

Uncorrelated 
KELS Model does not fit      

PDL 

 

t1.4872cos6

-t1.4199sin5-0.1549 



tR
 

5.7 4.6 5.2 4.1 Normal, 

Uncorrelated 
EAST tRt 4.3751sin5 0.34951- 

 

10.1 7.9 9.3 7.1 Normal, 

Uncorrelated 
EQIT 

 

tRt 2.1354sin 0.5024   7.9 6.4 9.1 7.2 Normal, 

Uncorrelated 
 

The Table 4.16 summarizes the results for sectors; PLT, BFT, DIV, C&P, MTR and TLE. 

The model did not fit to the company HAYL of the sector DIV; company CIC of the 

sector C&P; Company AMW of the sector MTR and the company DIAL of the sector 

TLE.  



Table 4.16: Circular Model for Sectors; PLT, BFT, DIV, C&P, MTR and TLE 

Sector Company Best Fitting Model Model 

Fitting 

Model 

Verification 

Remarks of 

Residuals 
   

R
M

S
E

 

M
A

D
 

R
M

S
E

 

M
A

D
  

PLT AGAL 

t2.5.sin5

-t2.1sin30.5- 



tR
 

8.8 7.1 7.8 5.9 Normal, 

Uncorrelated 
 BALA tRt 3sin5256.2 0.07576 

 

8.54 6.7 8.26 6.04 Normal, 

Uncorrelated 
 BOGA tRt 3cos3.1889-0.2733 

 

9.3 7.3 8.6 6.7 Normal, 

Uncorrelated 
 WATA tRt 6cos2.2451.316- 

 

7.9 6.3 6.6 5.3 Not Normal, 

Uncorrelated 
BFT BREW tRt 4sin4188.2665.1 

 

8.3 6.6 6.0 4.6 Normal, 

Uncorrelated 
 DISTIL tRt 6cos47.10179.0 

 

6.96 5.57 4.59 3.61 Normal, 

Uncorrelated 
 NESTL tRt 3cos4092.15412.1 

 

4.44 3.51 4.11 3.21 Normal, 

Uncorrelated DIV JKH tRt 3cos2.2917 0.43 

 

7.35 5.88 4.53 3,43 Normal, 

Uncorrelated 
 RICHA tRt 5cos1.5138 0.359- 

 

7.35 5.93 5.43 4.53 Normal, 

Uncorrelated 
C&P 

 

LANK 

 

tRt 2.114sin 0.052   10.5 8.3 8.8 7.3 Normal, 

Uncorrelated 
MTR DIMO tRt -1.3696sin-0.4712- 

 

7.0 5.4 6.8 5.0 Normal, 

Uncorrelated 
The Circular model was successful in 82% of the companies of the sample.  Patterns of 

the forecasted returns followed the patterns of actual returns. As such Circular Model is 

suitable in forecasting individual company returns of the Sri Lankan stock market. 



4.6 Test the ARCH effect on Returns 

The Engle's ARCH test was used to check whether the ARCH effect exist in individual 

company returns. A simple random sample of thirty companies was used for testing the 

hypotheses; 

H0: There is no ARCH up to order 1 in returns 

H0: There is ARCH up to order 1 in returns 

The MATLAB syntax, [h,p,fStat,crit] = archtest(e,'Lags',m) was used. The result h = 1 

indicates the rejection of null hypothesis of no conditional heteroscedasticity and 

conclude that there are significant ARCH effects in the series. At 5% significance level, 

the Table value (F table) is 3.8415. The summary of the analysis is given in Appendix 3.2 

For the company PEGA, the F statistics (1.2392) or the test statistics value is less than the 

critical value of the F table (3.8415). Therefore the null hypothesis is not rejected and, 

concluded that the ARCH effect does not exist in the return series. Conversely; for the 

company GHLL, the F statistics (10.9576) is greater than the critical value of the F table 

(3.8415). Therefore the null hypothesis is rejected and, concluded that the ARCH effect 

exists in the return series. Accordingly, ARCH effect does not exist in 80% of the return 

series. As such the ARCH model cannot be used to measure the risk of returns. 

4.7 Make Circular Indicator 



This part of the study was based on the Newton’s law of uniform circular motion. The 

law is widely applied in explaining; satellites orbiting the Earth, planets orbiting the Sun, 

motion of a vehicle in a circular path, motion in a banked track, playground Merry-go-

Rounds etc. 

Individual company returns of the Sri Lankan share market move in circular paths. In 

stock market performances, market demand would be the centripetal force. The 

measurement, named as the Circular Indicator (CI) was calculated by using the formula 

2

,,, . tititi rF 
 

For example; the Circular Model for the company EDEN is; 

tttRt  4cos42.1023cos6831.1 4sin8205.1 0.58047-   

The average amplitude of the wave, r is the average of the radii of the reference circles; 

8686.1       

3/)1024.26831.18205.1(



r
 

 Hence, the CI for the company EDEN is 4.936.  

The Circular Indicators for year 2014 were calculated for individual companies; given in 

Tables 4.17 to 4.19, sector wise. 

 



Table 4.17: Circular Indicators (CI) for Returns- Sector H&T 

Company Angular 

Speed (ω) 

Amplitude (r*) Circular Indicator (CI) 

EDEN 1.413 1.868 4.936 

GHLL 1.361 1.805 4.435 

PEGA 1.298 2.131 5.900 

TAJ 1.413 1.587 3.560 

TRAN 1.476 1.510 3.368 

HUNA 1.570 2.519 9.973 

PALM 1.335 3.677 18.060 

SIGI 1.466 3.0827 13.932 

AHOT 1.549 1.621 4.076 

AHUN 1.172 1.995 4.670 

 

The company PALM has the highest CI and the company TRAN has the lowest CI. 

Accordingly, the lowest level of risk is in corporate with the company PALM and the 

highest level of risk is in corporate with the company TRAN. In other words, most stable 

company of the sector L&P in share market performances is PALM and the least stable 

company is TRAN. 

 



Table 4.18: Circular Indicators (CI) for Returns- Sector MFG 

Company Angular Speed (ω) Amplitude (r*) Circular Indicator (CI) 

ABAN 1.529 1.735 4.609 

ACL 1.288 1.470 2.7835 

ACME 1.466 2.718 10.831 

KELA 1.2147 2.6044 8.2392 

TOKY 1.3509 1.3531 2.4733 

WALL 1.178 2.727 8.761 

ROCEL 1.319 3.229 13.755 

BLUE 1.445 2.549 9.391 

BOGAL 1.466 3.153 14.579 

CERA 1.211 2.674 8.664 

 

Results of the Table 4.18 revealed that the companies BOGAL, ROCEL and ACME are 

highly stable.  Circular indicators for sectors; BFI, PLT, BFT, DIV, L&P, C&P and MTR 

are given in the Table 4.19. Accordingly, the most stable company for sector BFI is 

ASIA, for sector PLT is BOGA and so on.  

 

 



Table 4.19: Circular Indicators for Sectors BFI, PLT, BFT, DIV, L&P, C&P and MTR 

Sector Company Angular Speed (ω) Amplitude (r*) Circular Indicator (CI) 

BFI ALLI 1.501 1.735 4.522 

 ASIA 1.221 2.908 10.332 

 DFCC 1.282 2.033 5.305 

 HNB 1.282 2.053 5.411 

 LFIN 1.413 2.224 6.994 

 LOLC 1.340 1.909 4.886 

 HASU 1.382 2.101 6.105 

PLT AGAL 1.217 2.359 6.777 

 BALA 1.691 2.525 10.790 

 BOGA 1.605 3.188 16.328 

 WATA 1.267 2.245 6.392 

BFT BREW 1.546 2.418 9.048 

 DISTIL 1.193 1.479 2.612 

 NESTL 1.424 1.409 2.828 

DIV JKH 1.424 2.291 7.479 

 RICHA 1.472 1.513 3.373 

L&P CLAND 1.466 1.476 3.194 

 PDL 1.498 1.453 3.165 

 EAST 1.363 4.375 26.105 

 EQIT 1.112 2.135 5.068 

C&P LANKEM 1.2828 2.111 5.718 

MTR DIMO 1.393 1.3696 2.613 

 

Chapter Summary 



Stock returns of the Sri Lankan share market follow wave like patterns. They do not have 

any trend or seasonal components. The covariance analysis revealed that the individual 

company returns move with the corresponding sector returns, but not with the total 

market returns. Forecasting share returns based on the covariance structure of the market 

was not highly successful. 

The most important sector for the economy of a country is the Bank Finance & Insurance 

(BFI). It is believed that the sector BFI is highly volatile; as such the returns are 

unpredictable. But this study found two successful methods for the purpose; ARIMA and 

CM. The Hotel & Travel (H&T) is the third income generator of the country 

(Konarasinghe, 2015). It is a fast growing industry after the thirty years of civil war. 

Hence the investor’s attraction towards the sector is increasing. The study found both 

ARIMA and CM as suitable techniques for forecasting individual company returns of the 

industry.  

The Sri Lankan stock market comprises twenty business sectors. The sample of the study 

contained fifty companies, representing ten of them. The ARIMA technique was 

successful in 78% of the companies and the CM was successful in 82% of the companies. 

The RMSE and the MAD were equally small in both techniques. However, the forecasted 

values of ARIMA models did not follow the patterns of the actual returns, but the 

forecasted values of CM followed the actual returns. The Figure 4.6, the actual returns, 

ARIMA forecasts and CM forecasts for the company HUNA is an example for patterns 

of actual returns Vs ARIMA and CM. The graphs for some other companies are given in 



Appendix 5. Accordingly, the CM is superior to ARIMA in forecasting individual 

company returns of the Sri Lankan share market. 
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Figure 4.9: Actual Returns Vs ARIMA & CM Forecasts 

The Circular Indicator is a theoretically developed method for measuring risk of returns. 

Therefore, it is a better measurement than the existing risk measurements; the standard 

deviation of returns and   the beta (β) coefficient of CAPM. 

 

 

 

 



CHAPTER 5 

CONCLUSIONS & RECOMMENDATIONS 

5.1 Conclusions 

The study was carried out with two objectives; development of forecasting models for Sri 

Lankan stock returns and the development of stability indicator for market performances 

of individual companies in the  Sri Lankan share market,.  The study was begun with 

pattern recognition of stock returns. It was concluded that; the total market returns, the 

sector returns and the individual company returns of CSE follows wave like patterns 

without any trend or seasonal pattern. Model development of the study was based on 

Technical Analysis. The mostly used technical analysis based model was CAPM, but 

many researchers have challenged the central assertion of CAPM; existence of linear 

relationship between the returns and the risk. As such the analysis was begun with the 

identification of covariance structure of the Sri Lankan share market. It was concluded 

that; the sector returns move with the total market returns, and individual company 

returns move with the corresponding sector returns. But there was no significant 

relationship between individual company returns and the total market returns. It was 

concluded that the central assertion of CAPM is invalid for the Sri Lankan share market. 

In Sri Lankan stock market, the risk of returns is measured by β coefficient of CAPM. 

The study evidenced that the CAPM does not hold for Sri Lankan share market, hence β 

coefficient is not a suitable measurement for risk of returns. 



The linear relationship between the individual company returns and the sector returns 

were used for model fitting. It was concluded that the simple linear regression model of 

individual company returns on sector returns is not suitable for forecasting returns.  

Returns of all the companies were stationary type; hence the ARIMA model was tested 

on forecasting individual company returns. It was concluded that the ARIMA models are 

suitable in forecasting individual company returns of Sri Lankan share market. Then the 

Circular Model was tested on returns and found that the model is successful in 84% of the 

sample of companies. Finally, it was concluded the Circular Model is the best forecasting 

model for the Sri Lankan share market. Also, it was concluded that the Circular Indicator 

is a suitable measurement for the risk of returns. 

5.2 Recommendations 

The CAPM suggests a linear relationship between an individual company return and the 

market risk. The assertion was rejected for the Sri Lankan context. Still, it was found that 

the sector returns are linearly related to total market returns, and the individual company 

returns linearly related to sector returns. As such, there exist a relationship between 

individual company return and the total market return. It is recommended to use the 

theory of relative motion to identify the hidden relationship, in order to improve CAPM.  

Wave like patterns is a common feature in natural sciences. The Circular Model may be 

applicable in the fields of Agriculture, Medicine, Meteorology and many others. 

Especially, the Circular Indicator may be highly useful in risk assessments. It is 



recommended to apply the Circular Model and the Circular Indicator for more real life 

situations in different fields. 
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Appendix 1: Computer Programs used for the Data Analysis 

1.1 MATLAB Program for the Outlier Detection and Adjustment 

x=double(dataset(....txt')); 

m = prctile(x,50) 

Qone=prctile(x,25) 

 Qthree=prctile(x,75) 

IQR=Qthree-Qone 

LB=Qone-1.5*IQR 

UB=Qthree+1.5*IQR 

for i=4:length(x) 

   if x(i) > UB || x(i) < LB; 

       y(i)=((x(i-1)+x(i-2)+x(i-3))/3); 

 else 

       y(i)=x(i); 

   end 

end 

y' 

 

 

 

 

 

 



1.2 MATLAB Program for fitting Circular Model 

y=double(dataset(….txt'));  yc=y-mean(y); 

line([1,],[mean(y),mean(y)]);  cs=sy(1); 

once_changed=0;  No_of_waves=0; 

for i=2:length(sy) 

    if cs~=sy(i) 

       cs=sy(i); 

        if ~once_changed 

            once_changed=1; 

        else  No_of_waves=No_of_waves+1; 

            once_changed=0; 

        end     end   end 

No_of_waves; f=No_of_waves 

N=length(y); om=(2*pi*f/N); t=[1:]'; Ary1=[]; 

for k=1:6 Ary1(:,k)=sin(k*om*t); 

end 

Ary1; Ary2=[]; 

for k=1:6 Ary2(:,k)=cos(k*om*t); 

end Ary2; 

X=[Ary1,Ary2]; mdl = GeneralizedLinearModel.fit(X,y) 

 

 

 



APPENDIX 2: TIME SERIES PLOTS OF RETURNS 
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2.5 Time Series Plot-Sector MFG       2.6 Time Series Plot-Sector MTR 
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2.7 Time Series Plot-Sector TLE         2.8 Time Series Plot-Sector OIL 
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2.9 Time Series Plot-Sector S&S        2.10 Time Series Plot-Sector F&T 
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   2.11 Time Series Plot-Sector C&P      2.12 Time Series Plot-Sector SRV 
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2.13 Time Series Plot-Sector IT                2.14 Time Series Plot-Sector P&E 
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 2.15 Time Series Plot-Sector PLT     2.16 Time Series Plot-Sector INV 
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2.17 Time Series Plot-Sector TRD       2.18 Time Series Plot-Sector HLT 
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2.19 Time Series Plot-Sector C&E       2.20 Time Series Plot-Sector BFT 
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2.23 Time Series Plot-BREW     2.24 Time Series Plot-DISTIL 



Index

R
e

tu
rn

2522241961681401128456281

30

20

10

0

-10

-20

-30

-40

         
Index

R
e

tu
rn

17115213311495765738191

20

10

0

-10

-20
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2.27 Time Series Plot-EDEN                               2.28 Time Series Plot-ABAN 
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2.29 Time Series Plot-KELANI        2.30 Time Series Plot-ALLI 



Index

 R
e

tu
n

210189168147126105846342211

20

10

0

-10

-20

            
Index

R
e

tu
rn

17015313611910285685134171

20

10

0

-10

-20

 

2.31 Time Series Plot-COMB         2.32 Time Series Plot-AGAL 
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2.37 Time Series Plot-ROCEL       2.38 Time Series Plot-BLUE 
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2.39 Time Series Plot-BOGAL       2.40 Time Series Plot-NEST 
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Index

R
e

tu
rn

-

1501351201059075604530151

30

20

10

0

-10

-20

-30

          
Index

R
e

tu
rn

1601441281129680644832161

15

10

5

0

-5

-10
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APPENDIX 3: ADFT AND ENGLE’S ARCH TEST RESULTS 

3.1 Augmented Dickey Fuller Test (ADFT) Results  

Sector Company  

ADFT results 

h P Value Test Statistic Critical 

Value 

Comments 

H&T PEGA 1 1.0000e-03 -10.7214 -1.9425 Stationary 

 GHLL 1 1.0000e-03 -12.3851 -1.9421 Stationary 

 TRANS 1 1.0000e-03 -13.4796 -1.9423 Stationary 

 HUNA 1 1.0000e-03 -8.2448 -1.9446 Stationary 

 PALM 1 1.0000e-03 -6.6417 -1.9446 Stationary 

 SIGI 1 1.0000e-03 -7.5797 -1.9459 Stationary 

 AHOT 1 1.0000e-03 -10.9495 -1.9425 Stationary 

 AHUN 1 1.0000e-03 -9.5730 -1.9425 Stationary 

 ABAN 1 1.0000e-03   -9.6042 -1.9439 Stationary 

MFG ACL 1 1.0000e-03 -11.6049 -1.9423 Stationary 

 ACME 1 1.0000e-03 -11.3291 -1.9425 Stationary 

 KELANI 1 1.0000e-03 -10.6370 -1.9425 Stationary 

 WALL 1 1.0000e-03 -6.4314 -1.9446 Stationary 

 ROCEL 1 1.0000e-03 -6.7616 -1.9444 Stationary 

 BLUE 1 1.0000e-03 -8.4001 -1.9444 Stationary 

 BOGALA 1 1.0000e-03 -8.8674 -1.9445 Stationary 

 CERA 1 1.0000e-03 -10.0675 -1.9429 Stationary 

BFI ALLI 1 1.0000e-03 -13.4584 -1.9424 Stationary 

 ASIA 1 1.0000e-03 -10.3273 -1.9424 Stationary 

 COMB 1 1.0000e-03 -10.6274 -1.9423 Stationary 

PLT AGAL 1 1.0000e-03 -10.0942 -1.9425 Stationary 

 BALA 1 1.0000e-03 -10.0668 -1.9433 Stationary 

 BOGA 1 1.0000e-03 -11.1215 -1.9424 Stationary 

BFT BREW 1 1.0000e-03 -9.9056 -1.9433 Stationary 

 DISTIL 1 1.0000e-03 -11.2835 -1.9423 Stationary 

 NESTL 1 1.0000e-03 -10.9515 -1.9425 Stationary 

DIV HAYL 1 1.0000e-03 -10.8940 -1.9421 Stationary 

 JKH 1 1.0000e-03 -10.1273 -1.9425 Stationary 

L&P CLAND 1 1.0000e-03 -13.0445 -1.9421 Stationary 

 KELSEY 1 1.0000e-03 -11.6504 -1.9441 Stationary 

 

 



3.2:  Engle’s ARCH Test Results 

Sector Company Engle’s ARCH Test 

 
h P value  F stat 

H&T PEGA 0 0.5382 1.2392 

 GHLL 1 9.3220e-04 10.9576 

 EDEN 0 0.7550 0.0974 

 TAJ 1 0.0308 4.6629 

 HUNA 0 0.0954 2.7812 

MFG ABAN 0 0.8372 0.0422 

 ACL 0 0.1941 1.6864 

 ACME 0   0.5421 0.3716 

 LMF 0 0.9595 0.0026 

 TOKYO 1 0.0272 4.8802 

 WALL 0 0.9299 0.0077 

 BOGALA 0 0.7526 0.0993 

BFI ALLI 0 0.4602   0.5454 

 ASIA 0 0.0544 3.7003 

 COMB 0 0.1391 2.1876 

 DFCC 1 0.0022 9.3955 

 LFIN 0 0.3628 0.8281 

PLT AGAL 0 0.8560 0.0329 

 BALA 0 0.2026 1.6236 

 BOGA 1 4.5053e-04 12.3100 

BFT BREW 1 0.0012 10.5268 

 DISTIL 0 0.3367 0.9229 

 NESTL 0 0.1355 2.2279 

DIV HAYL 0 0.1165 2.4639 

 RICHA 0 0.4782 0.5030 

L&P CLAND 0 0.0934   2.8141 

 KELSEY 1 0.0213 5.3031 

 EAST 1 0.0295 4.7385 

C&P LANK 1 1.7725e-05 18.4194 

 CIC 0   0.6632 0.1897 

 

 

 

 



APPENDIX 4: FOURIER TRANSFORMATION 

 

Appendix 4.1: Fourier Transformation on Returns of EDEN 

 
Sinωt Sin2ω

t 

Sin3ω

t 

Sin4ω

t 

Sin5ω

t 

Sin6ω

t 

Cosω

t 

Cos2

ωt 

Cos3

ωt 

Cos4

ωt 

Cos5

ωt 

Cos6

ωt 

 

0.987

7 

0.309

0 

-

0.891

0 

-

0.587

8 

0.707

1 

0.809

0 

-

0.454

0 

-

0.951

1 

0.156

4 

1.000

0 

0.156

4 

-

0.951

1 

-

0.454

0 

0.809

0 

0.707

1 

-

0.587

8 

-

0.891

0 

0.309

0 

0.987

0.309

0 

-

0.587

8 

0.809

0 

-

0.951

1 

1.000

0 

-

0.951

1 

0.809

0 

-

0.587

8 

0.309

0 

0.000

0 

-

0.309

0 

0.587

8 

-

0.809

0 

0.951

1 

-

1.000

0 

0.951

1 

-

0.809

0 

0.587

8 

-

-

0.891

0 

0.809

0 

0.156

4 

-

0.951

1 

0.707

1 

0.309

0 

-

0.987

7 

0.587

8 

0.454

0 

-

1.000

0 

0.454

0 

0.587

8 

-

0.987

7 

0.309

0 

0.707

1 

-

0.951

1 

0.156

4 

0.809

0 

-

0.891

0 

-

0.587

8 

-

0.951

1 

-

0.951

1 

-

0.587

8 

0.000

0 

0.587

8 

0.951

1 

0.951

1 

0.587

8 

0.000

0 

-

0.587

8 

-

0.951

1 

-

0.951

1 

-

0.587

8 

0.000

0 

0.587

8 

0.951

1 

0.951

1 

0.587

0.707

1 

1.000

0 

0.707

1 

0.000

0 

-

0.707

1 

-

1.000

0 

-

0.707

1 

0.000

0 

0.707

1 

1.000

0 

0.707

1 

0.000

0 

-

0.707

1 

-

1.000

0 

-

0.707

1 

0.000

0 

0.707

1 

1.000

0 

0.707

1 

0.000

0.809

0 

-

0.951

1 

0.309

0 

0.587

8 

-

1.000

0 

0.587

8 

0.309

0 

-

0.951

1 

0.809

0 

0.000

0 

-

0.809

0 

0.951

1 

-

0.309

0 

-

0.587

8 

1.000

0 

-

0.587

8 

-

0.309

0 

0.951

1 

-

0.156

4 

-

0.951

1 

-

0.454

0 

0.809

0 

0.707

1 

-

0.587

8 

-

0.891

0 

0.309

0 

0.987

7 

0.000

0 

-

0.987

7 

-

0.309

0 

0.891

0 

0.587

8 

-

0.707

1 

-

0.809

0 

0.454

0 

0.951

1 

-

-

0.9511 

0.8090 

-

0.5878 

0.3090 

0.0000 

-

0.3090 

0.5878 

-

0.8090 

0.9511 

-

1.0000 

0.9511 

-

0.8090 

0.5878 

-

0.3090 

0.0000 

0.3090 

-

0.5878 

0.8090 

-

0.9511 

1.0000 

-

0.9511 

0.8090 

-

0.5878 

0.3090 

0.0000 

-

0.3090 

0.5878 

 

 

-

0.4540 

-

0.5878 

0.9877 

-

0.3090 

-

0.7071 

0.9511 

-

0.1564 

-

0.8090 

0.8910 

0.0000 

-

0.8910 

0.8090 

0.1564 

-

0.9511 

0.7071 

0.3090 

-

0.9877 

0.5878 

0.4540 

-

1.0000 

0.4540 

0.5878 

-

0.9877 

0.3090 

0.7071 

-

0.9511 

0.1564 

 

0.809 

0.309 

-0.309 

-0.809 

-1.000 

-0.809 

-0.309 

0.309 

0.809 

1.000 

0.809 

0.309 

-0.309 

-0.809 

-1.000 

-0.809 

-0.309 

0.309 

0.809 

1.000 

0.809 

0.309 

-0.309 

-0.809 

-1.000 

-0.809 

-0.309 

0.7071 

0.0000 

-

0.7071 

-

1.0000 

-

0.7071 

0.0000 

0.7071 

1.0000 

0.7071 

0.0000 

-

0.7071 

-

1.0000 

-

0.7071 

0.0000 

0.7071 

1.0000 

0.7071 

0.0000 

-

0.7071 

-

1.0000 

-

0.7071 

0.0000 

0.7071 

1.0000 

0.7071 

0.0000 

-

0.7071 

 

-

0.5878 

-

0.3090 

0.9511 

-

0.8090 

0.0000 

0.8090 

-

0.9511 

0.3090 

0.5878 

-

1.0000 

0.5878 

0.3090 

-

0.9511 

0.8090 

0.0000 

-

0.8090 

0.9511 

-

0.3090 

-

0.5878 

1.0000 

-

0.5878 

-

0.3090 

0.9511 

-

0.8090 

0.0000 

0.8090 

-

0.9511 

 



7 

0.000

0 

-

0.987

7 

-

0.309

0 

0.891

0 

0.587

8 

-

0.707

1 

-

0.809

0 

0.454

0 

 

0.309

0 

0.000

0 

0.309

0 

-

0.587

8 

0.809

0 

-

0.951

1 

1.000

0 

-

0.951

1 

0.809

0 

 

0.000

0 

0.891

0 

-

0.809

0 

-

0.156

4 

0.951

1 

-

0.707

1 

-

0.309

0 

0.987

7 

 

8 

0.000

0 

-

0.587

8 

-

0.951

1 

-

0.951

1 

-

0.587

8 

0.000

0 

0.587

8 

0.951

1 

0 

-

0.707

1 

-

1.000

0 

-

0.707

1 

0.000

0 

0.707

1 

1.000

0 

0.707

1 

 

0.809

0 

0.000

0 

0.809

0 

-

0.951

1 

0.309

0 

0.587

8 

-

1.000

0 

0.587

8 

0.309

0 

 

0.156

4 

-

1.000

0 

-

0.156

4 

0.951

1 

0.454

0 

-

0.809

0 

-

0.707

1 

0.587

8 

0.891

0 

 

 

 

 

 

 

 

 


