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ABSTRACT 

The paper presents a new numerical method, called second derivative modified 

generalized backward differentiation formulae blended with backward differentiation 

formulae (SDMGBDF blended with BDF) with variable step sizes, for solving financial 

chaotic models. Unlike existing methods that linearize and subdivide the problem, this 

approach solves chaotic systems directly without linearization or subdivision. The 

method uses a multistep inversion technique and blends two linear multistep methods. 

The paper discusses convergence analyses and finds that the proposed block methods are 

efficient and accurate, making them suitable for solving chaotic initial value problems 

(IVPs) of ordinary differential equations (ODEs). 
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1. INTRODUCTION 

 

Nonlinear dynamics has emerged as a crucial field of science due to its significance in 

everyday activities. Mathematical models of these activities are formulated to facilitate 

understanding of physical phenomena, often resulting in differential equations. These 

differential equations can be categorized into linear and nonlinear ordinary differential 

equations (ODEs). However, many problems cannot be easily solved analytically, 

necessitating the development of numerical methods.  

Financial chaotic systems are complex and dynamic, exhibiting nonlinear behaviour that 

makes predictions and solving challenging. These systems are characterized by 

unpredictability, non-linearity, interconnectedness, and self-similarity. Understanding 

financial chaotic systems is crucial for identifying potential risks and opportunities, and 

for developing effective strategies to navigate these complexes. 

This study aims to contribute to the existing literature on financial chaotic systems by 

developing a novel approach to solve these complex systems. The proposed method has 

the potential to provide more accurate predictions and approximation, which can help 

financial institutions and policymakers make informed decisions. 

 

 

2. LITERATURE REVIEW 
 

Numerical methods for solving chaotic initial value problems (IVPs) of ODEs have been 

extensively studied. Chaotic systems exhibits complex behaviour characterized by 

sensitivity to initial conditions, topological transitivity, and dense periodic orbits 

(Davaney, 2003; Basener, 2006). Semi-analytic methods, such as Adomian 

decomposition and multistage differential transformation, have been used to solve chaotic 

ODEs (Nour et al., 2012). However, these methods lack global convergence, are tedious, 

and introduce errors. Recent studies have focused on developing new block second 

derivative linear multistep methods (LMMs) with improved stability and accuracy. 

Blended second derivative LMMs are a class of numerical methods used to solve 

ordinary differential equations (ODEs). These methods combine the advantages of 

different LMMs to produce a more accurate and efficient method. The development of 

blended second derivative LMMs dates back to the work of Brugnano & Trigiante 

(1998), who introduced the concept of blending different LMMs to produce a more 

accurate method. Since then, several researchers have contributed to the development of 

blended second derivative LMMs (Omar et al., 2021). Blended second derivative LMMs 

have several desirable properties, including: High accuracy, blended second derivative 

LMMs can achieve high accuracy by combining the advantages of different LMMs 

(Brugnano & Trigiante, 1998), stable and efficient. Blended second derivative LMMs 

have been compared with other methods, Runge-Kutta methods: Blended second 

derivative LMMs have been shown to be more accurate and efficient than Runge-Kutta 

methods for solving certain problems (Omar et al., 2021) and Adams-Bashforth methods.  
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The motivation for this research stems from the need to develop accurate and efficient 

numerical methods for solving chaotic systems of ODEs. Chaotic systems are ubiquitous 

in nature and are used to model complex phenomena in field such as physics, biology, 

and finance. 

There has been a flurry of research activities in finding accurate numerical and analytical 

methods for solving chaotic systems of ODEs. Chaotic ODEs have complicated 

dynamical systems, nonlinear aperiodic oscillators which are highly sensitive to small 

changes in the initial conditions with their solutions rapidly changing from being stable to 

unstable and non-periodic long-term behaviour. Solving these chaotic systems has been 

and still remains a challenge to researchers. Due to this reasons, the study of chaotic 

systems has increased because of their application in various areas. Most often, chaotic 

ODEs cannot be solved analytically; numerical methods have to be used. Many 

researchers used the classical numerical methods to solve the chaotic systems. Lorenz 

(1972) used the explicit Euler scheme with the central-difference scheme, Yao (2010) 

and Yorke & Yorke (1979) used the Adams method, Sparrow (1982) used the higher 

derivative scheme and Sarra & Meador (2011) used the Runge -Kutta method.  Sandile, 

Vusi, & Precious (2017) used the multi-domain spectral relaxation method to solve 

chaotic ODEs. The interval of integration was discredited over non-overlapping sub-

intervals of the domain. Also, the afore-mentioned and others used continuity conditions 

to advance the solution across the non-overlapping sub-intervals. The setback of this 

method is that it involves linearization of the nonlinear part and solving over multiple 

domains before taking the union, which introduces errors. 

These methods might not give correct solution due to the instability properties over a 

given time interval, since the global error grows as time increase if a large interval is 

considered; this is noted in Lorenz’s (1972) (butterfly effect). 

However, existing methods have limitations, such as lack of global convergence, tedious 

computations, time step selection, and introduction of errors. In this study, these 

challenges are tackled using the multistep collocation approach to derive the continuous 

conventional methods of second derivative block Linear Multistep Methods (LMMs) 

with variable step sizes.  

The following research questions are considered: Can the conventional second derivative 

LMMs with variable step size be able to solve nonlinear IVPs of ODEs with chaotic 

properties? Are the regions of absolute stability of the conventional second derivative 

LMMs stable? Is the numerical procedure involved in computing solutions tedious and 

time-consuming when the variable step sizes? Can global convergence be achieved using 

longer intervals without splitting? 

The primary objective of this study is to developed novel approach to solve financial 

chaotic systems using second derivative linear multistep methods. The specific objectives 

are: To derive a new formula by combing two different methods, enhancing the stability 

and accuracy of the resulting formula. To evaluate the effectiveness and efficiency of the 

proposed method in solving existing real-life financial chaotic ODEs.  
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To compare the numerical solutions, trajectories, phase space and phase portraits of the 

proposed method with existing methods used to solve financial chaotic systems and the 

in-built MATLAB ode 23s. 

This study aims to contribute to the existing literature on financial chaotic systems by 

developing a novel approach to solve these complex systems. The proposed method has 

the potential to provide more accurate predictions and approximation, which can help 

financial institutions and policymakers make informed decisions. 

Consider, chaotic system of initial value problem defined as 

0 0( ) ( , ( )), ( )y x f x y x y x y                                          (1)  

on the interval   0[ , ]NI x x where 0:[ , ] m

Ny x x  and 0:[ , ] m m

Nf x x    is        

continuous and differentiable we are concern with finding the numerical solutions of (1) 

using second derivative methods. The first section has the introduction to the study, 

including the background, research motivation, and objectives and literature review; the 

second section is the material and methods. The third section includes, the convergence 

and stability analysis while the last section we test the robustness of these new methods 

by solving some existing real-life financial chaotic ordinary differential equations 

(ODEs). 

Theorem (Existence and Uniqueness of Solutions) 

Let f(x, y) be defined and continuous for all points ( , )x y  in an open region of two-

dimensional real Euclidean space D, defined by , ,a x b y    a and b finite, and 

let there exist a constant L such that, for every x, ,x y such that ( , )x y  and ( , *)x y  are both 

in D, ( , ) ( , *) *f x y f x y L y y     . Then, if 0y  is any given number, there exist a unique 

solution y(x) of the IVP (1), where y(x) is continuous and differentiable for all ( , )x y  in D. 

 

 

3. MATERIAL AND METHODS 

 

3.1 The Second Derivative Multistep Collocation Method           

The method carried out in (Onumanyi et al., 1999), shall be used in this derivation, to 

construct a k-step second derivative multistep collocation method as 

 
1 1 1

2

0 0 0

( ) ( ) ( ) ( ) ''
t m m

j n j n j n j n j n j

j j j

y x x y h x f h x y  
  

  

  

                                (2)     

where  is the variable step size, ( ), ( ),j jx x  and ( )j x are the continuous  of the 

coefficients method defined as;                                                  
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1

, 1

0

1

, 1

0

1

, 1

0

( ) , {0,..., 1}

( ) , {0,..., 1}

( ) , {0,..., 1}

t m
i

j j i

i

t m
i

j j i

i

t m
i

j j i

i

x x j t

x x j m

x x j m

 

 

 

 





 





 





  

  

  







                (3) 

 

 To determine the continuous coefficients ( ), ( ),j jx x  and ( )j x  the following 

conditions are imposed:  

 

 

 

 2

1

1

1

, 0,..., 1; 0,..., 1

0, 0,..., 1; 0,..., 1

0, 0,..., 1; 0,1,..., 1

j ij

n j

n j

n

n

n

j t i t

h j m i t

h j m i t

x

x

x

 











    

    

    

                             (4) 

 

 

 

 

'

'

2 '

0, 0,..., 1; 0,..., 1

, 0,..., 1; 0,..., 1

0, 0,..., 1; 0,1,..., 1

j

n j ij

n j

i

i

i

j t i m

h j m i m

h j m i m

x

x

x



 



    

    

    

                                                 (5)

 

and 

 

 

 

 

''

''

2 ''

0, 0,..., 1; 0,..., 1

0, 0,..., 1; 0,..., 1

, 0,..., 1; 0,1,..., 1

j i

n j

n j ij

i

i

j t i m

h j m i m

h j m i m

x

x

x





 

    

    

    

                                   (6)  

where jx ,  j = 0, 1, …, m-1 are the m distinct collocation points used and t , 0 t k   the 

number of interpolation points and (4) - (5) can be written in matrix form as 

1DC                 (7) 

where I is the identity matrix of dimension ( ) ( )t m t m    while D and C are matrices 

defined as 
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1

1

1

2 1

1 1

2

0 0

1

2

2
1 1

1

2
1

2
2

3
1

1 ...

1 ...

...

1 ...

0 1 2 ... ( 1)

...

0 1 2 ... ( 1)

0 0 2 ... ( 2)( 1)

...

0 0 2 ... ( 2)( 1)

t m

n

t m

n

t m

n t n t

t m

m

n n

n n

n t

t m
m

t m
m

t m
m

x x x

x x x

x x x

x t m x
D

x t m x

t m t m x

t m t m x

 

 



 

   

 



 

 

 


 


 







 


 

   

   






 
 
 
 
 
 
 
 
 
 
 
 



           (8)       

 

 

 
2 2

0,1 1,1 1,1 0,1 1,1 0,1 1,1

2 2

0,2 1,2 1,2 0,2 1,2 0,2 1,2

2 2

0, 1, 1, 0, 1, 1, 1,

... ... ...

... ... ...

... ... ...

... ... ...

t n n m n n m

t n n m n n m

t m t m t t m n t m n m t m n m t m n m t m

h h h h

h h h h
C

h h h h

      

      

      

  

  

          



 












                                          (9) 

 

 

It follows from (7) the columns of C = D-1, give the elements of the continuous   

coefficients ( ), ( ),j jx x  and ( )j x  of the continuous scheme (3). 

3.2 Derivation of the Continuous Second Derivative Methods for k = 2 and 3 

The Modified Generalized Backward Differentiation Formulae blended with Backward 

Differentiation Formulae is defined as: 

 

2

0

( ) ( ) ( ) ( )
k

j n j v n v n k n k

j

y x x y h x f h x f    



                          (10) 

where, v =  is the greatest integer function.                    (11) 

       Case k =2: v = 2 as defined in (11) and (10) becomes 

2
2

2 2 2 2

0

( ) ( ) ( ) ( )j n j n n n

j

y x x y h x f h x f    



                        (12) 

 

 

 

 



Copyright: © 2025 IMM                                                                                                                                                       21                                                                                                                                              

ISSN 2719-2415 (Online)         

 

 ,                                (13) 

 

 Inverting the D matrix in (13) using maple software yields the elements of the matrix C. 

Substituting the columns of the matrix C in (12) gives the continuous coefficients of the 

method with  and  as follows: 

  

  

               

                   (14) 

    

] 

 

 

Substituting the continuous coefficients (14) into (12) produces the continuous 

interpolant of our new method as: 

 

y( )= yn+

n+1+ yn+2 + 

n+2 + ]gn+2    

                          (15) 

The differentiating the continuous interpolant once and evaluating at η = {0, }, yields 

the following  discrete schemes:  

  

                   (16) 
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Case k =3: v = 2 as defined in (11), and (10) becomes    

                              (17) 

 Similarly, using the same procedure as in case k=2 in (12), the first derivative of the 

continuous interpolant is evaluated at η = {0, 3 } yields the following three discrete 

schemes: 

  

        (18)            

 

             

4. CONVERGENCE AND STABILITY ANALYSIS 

In this section, the convergence and stability analysis of the block second derivative 

modified generalized backward differentiation formulae blended with backward 

differentiation formulae derived in section two is carried out with results presented in 

tabular and graphical forms. These include: order, error constant, and zero stability, 

consistency and the regions of absolute stability. 

 

4.1 Order of Second Derivative Methods for k= 2 and 3 

The order and error constant of the discrete schemes in (16) and (18) are obtained or 

carried out in block form. Following Lambert (1973) and Fatunla (1980) the local 

truncation error associated with the k-step second derivative multistep method (2) is the 

linear difference operator L defined as 

 

  

0
2

0

[ ( ) : ] { ( ) ( ) ( )}
k

j n n j n n j n

i

L y x h y x jh h y x jh h y x jh  




                                  (19) 

where y(x) is an arbitrary function, continuously differentiable on [a, b]. Expanding 

y ( )nx jh and its derivative ( )ny x jh  as Taylor series about x, and collecting terms in 

(19) give  

      
1

0 1[ ( ) : ] ( ) ( ) ... ( ) ...q

n n q nL y x h C y x C h y x C h y x    
                                  (20) 
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where the constant 
,qC
 q=0, 1, … are given as

 

0

0

1

0 0

2

0 0 0

1 2

0 0 0

1

2

1 1 1
, 3, 4,...

( 1) ( 2)

k

j

j

k k

j j

j j

k k k

j j j

j j j

k k k
q q q

q j j j

j j j

C

C j

C j j

C j j j q
q q q



 

  

  



 

  

 

  



 

  

   
   



 

  

  

                              (21)    

The method in (16) expressed in the form of (19) produces the values of the continuous 

coefficients of the method as: 

     

 0 1 2 0

1 2 2

1 1 16 17
, 1, , ,1 , 0,0

16 17 17 16

1 5 10 1 2
, , , , ,

2 8 17 8 17

8

17

   

  

     
         
     

     
         

    



                                          (22) 

Substituting the values of the continuous coefficients in (22) into (21) and solving 

gives 0 1 2 3 4 5 0C C C C C C       but 6 0C   that is 2 0pC  
 

Thus the methods (16) are of uniform order p=4 with error constant 6

1 1
,

240 255
C 

 
 
 

. 

The method is also consistent since p = 4.  

 Using the same approach as in k=2, the order and error constants of the SDMGBDF 

blended with BDF for k = 3 is obtained and displayed in Table 1. 
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   Table 1: Order and Error Constant of Second Derivative Methods for k = 2 and 3 

 

 

 

 

 

  

 

 

 

 

 

 

4.2 Zero Stability of Second Derivative Methods for k = 2 and 3 

To determine the zero stability of the methods in (16), we express our methods in the 

form of Lambert (1973) to give: 

   

 

2
( )

17 17
(1 )

16 16

17 16
0,1 0,

16 17

r r r r r

r r r

    

   
 

    

 

2
( )

16 16
( )

17 17

16
0,

17

r r r r r

r r

    

 

 

 Since r=0, 
16

0,
17

r r  by Lambert (1963) the methods in (16) are zero stable. 

 Using the same approach for when k=2 of the SDMGBDF with BDF for k=3, the 

methods are all consistent and zero stable. Hence by Henrici (1962), the SDMGBDF 

blended with BDF are all convergent. 

Step 

No. 

Evaluation points  

Order 

      Error Constant 

k=2 
1

( ), ( )n n
y x y x

   

 

4 3 34.2 10 ,3.9 10     

 

k=3 
1

3

( ), ( )

( )

n n

n

y x y x

y x





 


 

5 3 23.4 10 , 1.8 10 ,

31.6 10

   

  
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4.3 Regions of Absolute Stability of Second Derivative Methods            

In this section, the regions of absolute stability of the schemes derived in section two in 

block form are plotted using the approach of Okuonghae & Ikhile (2011) by expressing 

the methods derived in section two into general linear methods in the form of: 

                 

11 1 1 11 1 1 11 1 1

1 1 1

11 1 1 11 1

1 1

k n k n k n

k kk n k k kk n k kk n k

k n k

k kk n k k

y y

y y

a a b b c c f

a a b b c c f

d d f w w

d d f w w

  

 





        
         
        
        
        

  
   
  
  
  

1 11 1 1

1

n k n

k n k k kk n

g u u g

g u u g

 



     
     
     
     
     

               

(23)

 

where, 

11 1 11 1 11 1

1 1 1

11 1 11 1 11 1

1 1 1

, , ,

, ,

k k k

k kk k kk k kk

k k k

k kk k kk k kk

A B

a a b b c c

C

a a b b c c

d d w w u u

D W U

d d w w u u

  

  

     
     
     
     
     

     
     
     
     
     

 

 

The elements of A, B, C, D, W, and U are substituted into the characteristic equation 

(24).  

2 2det( ( ) )) 0r A Cz Wz B Dz Uz                                                             (24)  

Solving (24) in a maple environment yields the stability polynomial of the method and 

using a MATLAB code, the regions of absolute stability of the Second Derivative Linear 

Methods are plotted 

 

4.3.1 Region of Absolute Stability of Second Derivative for k = 2 and 3      

Using the approach in Okuonghae & Ikhile (2011), the methods in (16) are expressed in 

the form of (23) gives: 
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                                            (25) 
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where, 
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              

  
 

 

 

Substituting the values of the matrices A, B, C, D, W, and U into (20) in a MATLAB 

environment produces the stability polynomial of the  SDMGBDF blended with BDF for 

k = 2 in (26): 

 

2 2 2 2 2 3 26 15 4 6 9 1 1
( )

11 22 11 11 22 11 11
r r r z r z r rz r z rz                                       (26) 

The stability polynomial in (26) plotted in a MATLAB environment produces the region 

of absolute stability of the SDMGBDF blended with BDF for k=2 and 3 as shown in 

figure 3. 

 

Figure 1: Regions of Absolute Stability of second derivative Methods for k=2 and 3 

 

 Stable Region 

     Unstable Region  

      Stable Region 
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5. MODEL SIMULATION 

In this section, three existing real-life problems with chaotic behaviours are solved 

numerically using our new methods and results compared with those obtained from 

existing methods in literature and the MATLAB ODEs solver. We considered the 

following problems in Wang et al., (2020), Ahmed et al., (2022) and Huang & Li (2018). 

 

5.1 Numerical Simulation of Models 

5.1.1 Model 1: Stock Price, Interest Rate, and Investor Sentiment        

This system captures a chaotic system which described the wealth and inflation with 

heterogeneous agents. The system is modeled by the following set of IVPs. 

 

       

2 2 2

1 1 2 1 2 3 1 2 3

2 2 2

2 2 3 1 2 1 2 3

2 2 2

3 3 1 2 1 2 3

( )

( )

( )

y y y y y y y y y

y y y y y y y y

y y y y y y y

  

   

   

      

      

      
                                    

Initial conditions: y1(0) = 10, y2(0) = 10, y1(0) = 0.5, xϵ[0,20]. This system was solved for 

the parameters: α=0.1, β=0.2, γ=0.3, δ=0.01, ζ=0.05, η=0.1, θ=0.2, ι=0.01, λ=0.1, μ=0.2, 

ν=0.3, ξ=0.01, Source: Wang et al., (2020). 

5.1.2 Model 2: Wealth, Inflation, and Stock Price                     

This system captures a chaotic system which described the wealth and inflation with 

heterogeneous agents. The system is modeled by the following set of IVPs. 

  

1 1 2 1 2

2 2 1

2 2 2

3 3 1 2 1 2 3( )

y y y y y

y y y

y y y y y y y

 

  

   

   

   

      
                                    

Initial conditions: y1(0) = 100, y2(0) = 10, y1(0) = 0.5, xϵ[0, 20]. This system was solved 

for the parameters: φ=0.05, ψ=0.1, ρ=0.02, τ=0.01, υ=0.1, θ=0.01, λ=0.1, μ=0.2, ф=0.3, 

δ=0.01.Source: Ahmed et al., (2022). 

5.1.3 Model 3: Interest Rate, Investment Cost, and Price Exponent         

This model descried the chaotic financial system and is given by 

 

T 
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Initial conditions: y1(0) = 1, y2(0) = 2, y1(0) = 0.9, xϵ[0, 200]. This system was solved for 

the parameters, a=0.95, b=0.2, c=1.5, Source: Huang &  Li (2018). 

5.2 Solutions to Numerical Simulation of Models                                               

Tables 2-4 shows the values of each component of models solved at selected times. These 

values were obtained using our newly developed scheme and ODE23s. The results 

obtained using all the methods are in good agreement for all the selected times presented 

on the tables and the solution curves. Our CPU time is smaller compared with ODE23s 

solver. 

Table 2: Numerical Simulation of model 1 using SDMGBF Blended with BDF k =2, 3 and ODE 

23s 

Methods SDMGBF 

Blended with 

BDF k = 2 

SDMGBF 

Blended with BDF 

k = 3 

 

ODE 23s 

CPU TIME 0.146s 0.186s 0.926s 

Step Size h=0.1-0.001 h=0.1-0.001 h=0.001 

y1(t)    

2 4.707971 4.707971 4.707971 

4 5.440316 5.440316 5.440316 

6 10.551679 10.551679 10.551679 

8 8.014881 8.014881 8.014881 

10 6.541885 6.541885 6.541885 

12 6.836965 6.836965 6.836965 

14 7.6555241 7.6555241 7.6555241 

16 8.180731 8.180731 8.180731 

18 8.230986 8.230986 8.230986 

20 8.046312 8.046312 8.046312 

y2(t)    

2 10.386076 10.386076 10.386076 



Copyright: © 2025 IMM                                                                                                                                                       29                                                                                                                                              

ISSN 2719-2415 (Online)         

 

 

 

 

 

 

             

 

4 10.930979 10.930979 10.930979 

6 11.318991 11.318991 11.318991 

8 11.647313 11.647313 11.647313 

10 11.924414 11.924414 11.924414 

12 12.134560 12.134560 12.134560 

14 12.280555 12.280555 12.280555 

16 12.380495 12.380495 12.380495 

18 12.449986 12.449986 12.449986 

20 12.498972 12.498972 12.498972 

y2(t)    

2 -0.186498 -0.186498 -0.186498 

4 0.258307 0.258307 0.258307 

6 0.090681 0.090681 0.090681 

8 -0.070051 -0.070051 -0.070051 

10 0.011276 0.011276 0.011276 

12 0.086964 0.086964 0.086964 

14 0.102674 0.102674 0.102674 

16 0.080648 0.080648 0.080648 

18 0.055638 0.055638 0.055638 

20 0.043734 0.043734 0.043734 
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Figure 2: Phase Space Plots of Model 1 using SDMGBDF blended with BDF k=2 Red 

and ode23s Black 

        
Figure 3: Phase Space Plots of model 1 using SDMGBDF blended with BDF k=2 Red   

and ode23s Black.  
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Figure 4: Phase Space Plots of model 1 using SDMGBDF blended with BDF k=2 

Red and ode 23s Black. 

 

Figure 5: Phase Portraits of model 1 using SDMGBDF blended with BDF k=2 Blue and 

ode 23s Red. 
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Figure 6: Phase Portraits of model 1 using SDMGBDF blended with BDF k=2 Blue and 

ode 23s Red   

                                     

 
 

Figure 7: Phase Portraits of model 1 using SDMGBDF blended with BDF k=2 Blue and 

ode 23s Red. 
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Figure 8: Phase Portraits of model 1 using SDMGBDF blended with   BDF k=2 Blue and 

ode 23s Red 

 

 
 

Table 3: Numerical Solutions of model 2 using SDMGBF Blended with BDF k =2, 3 and 

ODE23s 

Methods SDMGBF 

Blended with 

BDF k = 2 

SDMGBF 

Blended with 

BDF k = 3 

 

ODE 23s 

CPU TIME 0.153s 0.265s 0.314s 

 Step Size h=0.1-0.01 h=0.1-0.01 h =0.001 

y1(t)    

2 0.0008404 0.0008404 0.0008404 

4 0.0009144 0.0009144 0.0009144 

6 0.0015623 0.0015623 0.0015623 

8 0.0013021 0.0013021 0.0013021 
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Figure 9: Phase Space Plots of Model 2 using SDMGBDF blended with BDF k=3 Purple 

and ode 23s Black 

                 
 

10 0.0013673 0.0013673 0.0013673 

y2(t)    

2 -0.0000500 -0.0000500 -0.0000500 

4 -0.0008044 -0.0008044 -0.0008044 

6 0.00039478 0.00039478 0.00039478 

8 0.00011663 0.00011663 0.00011663 

10 0.00012215 0.00012215 0.00012215 

y3(t)    

2 -0.0013923 -0.0013923 -0.0013923 

4 -0.0012813 -0.0012813 -0.0012813 

6 0.0011989 0.0011989 0.0011989 

8 0.0054729 0.0054729 0.0054729 

10 0.0001540 0.0001540 0.0001540 
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Figure 10: Phase Space Plots of Model 2 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Black. 

           

Figure 11: Phase Space Plots of Model 2 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Black. 
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Figure 12: Phase Portrait Plots of Model 2 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Black   

         

Figure 13: Phase Portraits of Model 2 using SDMGBDF blended with BDF k=3 Blue and 

ode23s Purple 
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Figure 14: Phase Portraits of Model 2 using SDMGBDF blended with BDF k=3             

Blue and ode23s Purple 

 

Figure 15: Phase Portraits of Model 2 using SDMGBDF blended with BDF k= 3                 

Blue and ode23s Purple 
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Table 4: Numerical Solutions of Model 3 using SDMGBF Blended with BDF k =2, 3 and 

ODE 23s 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods SDMGBF 

Blended with 

BDF k = 2 

SDMGBF 

Blended with 

BDF k = 3 

 

ODE 23s 

CPU TIME 0.125s 0.144s 0.142s 

 Step Size h=0.1-0.01 h=0.1-0.01 h=0.1-0.01 

y1(t)    

20 -0.011461 -0.011461 -0.011461 

40 -1.501012 -1.501012 -1.501012 

60 -0.019546 -0.019546 -0.019546 

80 1.626262 1.626262 1.626262 

100 0.086041 0.086041 0.086041 

y2(t)    

20 1.339326 1.339326 1.339326 

40 2.212641 2.212641 2.212641 

60 1.762742 1.762742 1.762742 

80 1.372151 1.372151 1.372151 

100 1.035769 1.035769 1.035769 

y3(t)    

20 0.211258 0.211258 0.211258 

40 0.547505 0.547505 0.547505 

60 -0.112985 -0.112985 -0.112985 

80 -0.768645 -0.768645 -0.768645 

100 0.1772405 0.1772405 0.1772405 
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Figure 16: Phase Space Plots of Model 3 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Red. 

        

Figure 17: Phase Space Plots of Model 3 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Red. 
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Figure 18: Phase Space Plots of Model 3 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Red. 

             

Figure 19: Phase Portrait Plots of Model 3 using SDMGBDF blended with BDF k=3 

Purple and ode 23s Red. 
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Figure 20: Phase Portraits of Model 3 using SDMGBDF blended with BDF k=3 Purple 

and ode23s Red. 

            
 

Figure 21: Phase Portraits of Model 3 using SDMGBDF blended with BDF k=3 Purple 

and ode23s Red. 
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Figure 22: Phase Portraits of Model 3 using SDMGBDF blended with BDF k=3 Purple 

and ode23s Red. 

 

           

6. DISCUSSION 

In this section, we present the results of applying our newly developed methods and 

ode23s to financial chaotic models. The results show that the new methods accurately 

approximate the solutions of financial chaotic initial value problems (IVPs) of ordinary 

differential equations (ODEs). The phase spaces and phase portraits illustrate the chaotic 

behaviour of the various market regimes, including: Wealth, inflation rates, and stock 

prices (Model 1), 

Stock prices, interest rates, and investor sentiment (Model 2), saving amount, per 

investment cost, and demand elasticity (Model 3). The chaotic behaviour in these markets 

regimes can lead to severe economic and financial consequences, including: Market 

crashes, Hyperinflation, Wealth redistribution, Economic instability, Unpredictable 

dynamics in wealth and inflation, increased inequalities, Systemic risk, and Global 

contagion (Stock & Watson, 2020). To mitigate these effects, effective tools include: 

Monetary policy adjustments, Scenario planning, Fiscal policy interventions, 

Diversification, Risk management strategies (Krugman, 2020). 

The results also highlight the impact of various parameters on the systems behaviour, 

including: Saving amount (a), per investment cost (b), and Demand elasticity (c). 

Changes in these parameters can lead to increased chaotic behaviour, mirroring economic 

recessions. 
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7. CONCLUSION 

 

This study aimed to develop and apply a convergent and A-stable method with variable 

step size for solving chaotic financial systems. The research questions, objectives, and 

statement of the problem guided the investigation. 

The findings of the study provide affirmative answers to the research questions; 

Can the conventional second derivative LMM with variable step size solve nonlinear 

IVPs of ODEs with chaotic properties? Yes, the developed method demonstrated 

convergence and A-stability. Are the regions of absolute stability of the conventional 

second derivative LMMs stable? Yes, the method showed stability in solving chaotic 

financial systems. 

Is numerical procedure involved in computing solutions tedious and time-consuming 

when using variable step sizes? No, the comparison with ode23s showed that the 

developed method required smaller CPU time indicating that it is not tedious for the 

system. Can global convergence be achieved using longer intervals without splitting? 

Yes, the study demonstrated global convergence without splitting the interval of 

integration. 

The study achieved its objective of deriving second derivative conventional forms of 

variable step size LMMs for solving chaotic IVPs of ODEs. The developed method 

effectively addressed the statement of the problem by providing a convergent and A-

stable solution to chaotic financial systems. The findings of this study confirm that 

financial markets exhibit chaotic behaviour characterized by unpredictability, sensitivity 

to initial conditions, and complex dynamics. Specifically, the results show that: This 

means: Long-term predictions are impossible due to unpredictability of chaotic financial 

systems. Small changes in investor sentiment can drastically affect stock prices, 

highlighting the sensitivity of financial markets to initial conditions. Market volatility and 

wealth are interconnected and influence one another, leading to complex dynamics. 

Inflation rate fluctuations significantly impact overall market dynamics, leading to 

chaotic market regimes. The study’s finding have significant implications for financial 

institutions, policymakers, and investors, emphasizing the need for adaptive strategies to 

note that numerical analysis should be complemented with empirical studies to ensure the 

accuracy and relevance of the findings. 
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